The James Webb Space Telescope has made one of its first images of WR 124, a Wolf-Rayet star 15,000 light-years away in the constellation Sagittarius. The star is one of the brightest, most massive, and briefly observable stars known.

Now come to the point that,

Webb’s instruments reveal the detailed structure of WR 124’s nebula!

The Mid-Infrared Instrument (MIRI) on Webb reveals that Wolf-Rayet stars are effective dust emitters. In longer mid-infrared wavelengths, cooler cosmic dust illuminates, revealing the structure of WR 124’s nebula. Webb’s Near-Infrared Camera (NIRCam) balances the brightness of the star core of WR 124 with the intricate details in the fainter gas surrounding it.

Here is a term to know,

What is WR 124?

The material-ejected ring nebula M1-67  surrounds WR 124 a Wolf–Rayet star in the constellation Sagitta. At a radial velocity of around 200 kilometers per second, it is one of the fastest runaway stars in the Milky Way. Paul W discovered it in 1938. Merrill and classified as a Wolf–Rayet star with a high velocity. WR 124 is 30 times the Sun’s mass and has already shed 10 Suns’ worth of material. As the blasted gas recedes from the star and cools, cosmic dust develops and emits infrared light that Webb can detect.

So, here arises the question,

What is the importance of observing the rare Wolf-Rayet phase?

Before going supernova, massive stars go through a short Wolf-Rayet phase. Webb’s detailed observations of this rare phase are helpful to astronomers because they show how this phase works. Wolf-Rayet stars are now shedding their outer layers, resulting in their characteristic gas and dust halos.

But,

How does WR 124 help in understanding the early history of the universe?

Astronomers use stars like WR 124 as analogs to comprehend better a crucial period in the universe’s early history. These dying stars initially seeded the newborn cosmos with heavy elements formed in their cores, elements that are now widespread across the universe, including on Earth.

Furthermore,

Contribution to the universe’s “dust budget”!

Astronomers are interested in the genesis of cosmic dust that can survive a supernova explosion and contribute to the universe’s overall “dust budget” for a variety of reasons. Dust plays an essential function in the universe as it provides shelter for budding stars, aids in the formation of planets, and provides a platform for molecules, including the building blocks of life on Earth, to form and clump together. Despite dust’s crucial roles, there is more dust in the universe than can be explained by astronomers’ existing dust-formation hypotheses. The universe has an excess of dust in its budget.

We will be looking forward for,

Future possibilities for studying cosmic dust!

Before Webb, dust-loving astronomers required more specific data to investigate concerns of dust creation in environments such as WR 124 and whether the dust grains were large enough to survive the supernova and become a significant contributor to the total dust budget. Webb offers new opportunities for researching cosmic dust. It is best viewed at infrared light wavelengths.

Revealed Wolf Rayet star nebula
Credits: NASA, ESA, CSA, STScI, Webb ERO Production Team

Lastly,

Summary:

NASA’s James Webb Space Telescope has looked at WR 124, a Wolf-Rayet star that is 15,000 light-years away and is in the constellation Sagittarius. Webb’s instruments have given us a clear picture of how the star’s nebula is put together. This shows that Wolf-Rayet stars are good at making dust. Before going supernova, WR 124 goes through a short phase called Wolf-Rayet, which is interesting for astronomers to study. Astronomers can also use stars like WR 124 to learn about a critical time in the universe’s early history. Cosmic dust is essential to the universe, and Webb gives us new ways to study it. Infrared wavelengths of light show the best cosmic dust, which Webb can also see.

 

Published by: Sky Headlines

NASA’s $10 billion James Webb space telescope is now back in operation! After recovering from the 2nd Instrument Glitch that affected one of its instruments, NASA’s  Space Telescope (JWST or Webb) officially started full science operations on Monday (January 30).

What was the flaw of the James Webb Telescope?

NASA stated on Tuesday (January 31), the James Webb Telescope team conducted days of testing and evaluation. They do so after a “communications delay” on January 15 caused issues with the telescope’s Near Infrared Imager and Spitless Spectrograph (NIRISS) instrument.

On Friday (January 27), In its brief statement, the agency made a statement. They say that it was a major defect. Moreover, the agency said: “Observations that were impacted by the pause in NIRISS operations will be rescheduled,”

Who helped NASA in diagnosing this 2nd instrument glitch?

NIRISS was provided by the Canadian Space Agency (CSA), so NASA and CSA personnel collaborated on troubleshooting. According to NASA’s statement published on January 24, the initial problem was a: “communications delay within the instrument, causing its flight software to time out,”

According to NASA, NIRISS can normally operate in four different modes. When other James Webb Telescope instruments are busy, the instrument starts acting as a camera. NIRISS can also study the light signatures of small exoplanet atmospheres, perform high-contrast imaging, and study distant galaxies.

What is the Medium Resolution Spectrometer?

Prior to the NIRISS problem, another JSWT instrument encountered a problem in August 2022. This time it was a grating wheel inside the observatory’s Mid-Infrared Instrument (MIRI). However, because the wheel is only required for one of MIRI’s four observing modes, the instrument continued to observe during recovery operations. In November, work on recovering the glitch, known as the Medium Resolution Spectrometer, was all done.

How long it took to recover JSWT?

The James Webb Telescope team also spent two weeks in December dealing with the 2nd Instrument Glitch that kept putting the telescope in safe mode. The problem which was making science observations difficult was a software glitch in the observatory’s attitude control system, which was affecting the direction in which the telescope pointed. On December 20, the observatory recovered quickly from the problem, resuming full science operations.

 

Published by: Sky Headlines

More than 33,000 newborn stars are hidden in the NGC 346 Nebula. Which is the brightest and greatest star-producing region in the galaxy, thanks to Webb’s high-resolution imagery. Astronomers have recently studied NGC 346 with telescope missions, but this is the first time they have observed the dust. The formation of the first stars during “cosmic noon” more than 10 billion years ago is seen in a new image from the James Webb Space Telescope (JWST).

At “cosmic noon,” the James Webb Space Telescope discovers star birth clues for newborn stars. Astronomers have come closer to understanding how early stars evolved during “cosmic noon” than 10 billion years ago.

By combining Webb’s observational capabilities with the gravitational lensing effect, which occurs when extremely massive foreground objects bend light to magnify faint background objects, astronomers were able to make an additional discovery while studying this image. They discovered an unknown and extremely distant galaxy.

Cosmic Noon!

The Cosmic Noon of galaxy formation began roughly three billion years after the Big Bang when the Cosmic Dawn of galaxy formation came to an end and galaxies started to develop at ever-faster rates. A “typical” galaxy at that time was much bigger than it had been during the Cosmic Dawn. 

These galaxies also contained supermassive black holes, which, while consuming neighboring gas, evolved into remarkably bright celestial objects. The majority of the stars and black holes in the universe developed over a few billion years close to Cosmic Noon.

In the NGC 346 nebula, which is the galaxy’s brightest and greatest star-forming region. Scientists have now found more than 33,000 newborn stars all thanks to Webb’s high-resolution imaging. 

NGC 346 Nebula!

The recently released image shows NGC 346, an object that is a part of the Small Magellanic Cloud (SMC), a dwarf galaxy that is only 200,000 light years away from Earth. As is the case in many regions of the present universe, NGC 346 was already well-known as a nursery for young stars.

The Small Magellanic Cloud (SMC), a dwarf galaxy near the Milky Way, is where NCG 346 is present. 

It is one of the most active star-forming zones in nearby galaxies, but NGC 346, and is shrouded in mystery. Compared to the Milky Way, the SMC has lower amounts of metals, which are substances heavier than hydrogen or helium. 

Scientists anticipated that there would be very little dust. Moreover, it would be difficult to detect because the majority of the dust grains in space are of metals. But brand-new Webb data shows the exact reverse.

In the upcoming months, scientists hope to discover more. If the Small Magellanic Cloud’s star formation process is comparable to or unlike our own. 

By sucking in surrounding dust these stars are expanding and increasing their size and composition, so it is still unknown how much Webb will hold itself during this star formation process. Ultimately, a rocky planet will be all alone.

What are astronomers’ thoughts on this discovery? 

Astronomers are now relying on JWST to search for the youngest stars and find stars that are not visible in the dust. Astronomers have found several stars that are invisible or misidentified in the optical range by looking for star-forming regions in the infrared.

One of the authors of the report and an astronomer with the Universities Space Research Association Margaret Meixner said; “We have just scratched the surface of this data,”. Moreover, she stated that; “We are going to go back and push it down to [almost] brown dwarf limits to see what we can find.”

 

Published by: Sky Headlines