NASA’s James Webb Space Telescope (JWST) has detected silicate cloud features in the atmosphere of a distant exoplanet called VHS 1256 b, which is located about 40 light-years away from us. VHS 1256 b is a planetary-mass object that orbits not one but two stars over 10,000 years. The atmosphere of this exoplanet is very dynamic, constantly mixing and moving during its 22-hour day. This makes it the most variable planet-size object ever discovered.
The research team, led by Brittany Miles of the University of Arizona, utilized data from JWST to analyze the atmosphere of VHS 1256 b. This data enabled them to pinpoint the presence of water, methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere, marking a groundbreaking discovery of multiple molecules on an extrasolar planet. Additionally, they observed variations in the sizes of silicate dust grains within the planet’s atmospheric composition. These significant findings offer valuable insights into the weather patterns and atmospheric dynamics of VHS 1256 b.
But first, find out
What is VHS 1256 b?
VHS 1256 b is an exoplanet located about 40 light-years away from Earth. This planet orbits two stars and is one of the most variable planetary-mass objects ever observed. Its atmosphere is constantly changing, and it has swirling, gritty silicate clouds that are so surprising that they create significant brightness changes. Using the JSWT, researchers were able to detect a range of molecules in VHS 1256 b’s atmosphere. Molecules include water, methane, carbon monoxide, and carbon dioxide.
Professor A Biller of the University of Edinburgh says: There’s a huge return on a very modest amount of telescope time,” She added. “With only a few hours of observations, we have what feels like the unending potential for additional discoveries.”
Compared to other brown dwarfs with greater mass, VHS 1256 b exhibits lower gravity, allowing its silicate clouds to persist at higher altitudes where they can be observed. Moreover, the planet is relatively youthful, originating 150 million years ago. Over billions of years, it will continue to alter and cool. Exoplanet has already revealed many amazing facts about their atmosphere and environment. Scientists are still analyzing the data gathered by the James Webb Space Telescope.
A researcher at the University of Edinburgh in Scotland, Beth Biller says: “The finer silicate grains in its atmosphere may be more like tiny particles in smoke”. Moreover, she said: “The larger grains might be more like very hot, very small sand particles.”
Now, the question here is
How has JSWT observed this exoplanet?
The researchers used two instruments aboard the James Webb Space Telescope. One of which is called the Near-Infrared Spectrograph (NIRSpec). The second one is the Mid-Infrared Instrument (MIRI), to gather data known as spectra. Because VHS 1256 b orbits at a great distance from its two stars, the researchers were able to observe the planet directly without having to use a technique called a transit, which involves observing the dip in brightness of a star when a planet passes in front of it, or a coronagraph, which blocks the light of the star to reveal fainter objects nearby. This direct observation allowed for a more detailed analysis of the exoplanet’s atmosphere and the molecules presents within it.
Now come to the point,
What is the significance of this observation?
The observation of VHS 1256 b has provided scientists with a wealth of data about the planet’s atmosphere. Particularly about the composition and behavior of its clouds. This is significant because the study of exoplanet atmospheres is a key area of research in understanding the origins of our solar system and the possibility of life beyond it. Observing VHS 1256 b has allowed researchers to identify multiple features in the planet’s atmosphere simultaneously. This data will serve as a valuable resource for future modeling efforts. Moreover, it will help scientists better understand the atmospheric conditions on exoplanets.
A research team led by Brittany Miles of the University of Arizona says: “We’ve identified silicates, but better understanding which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” He added: “This is not the final word on VHS 1256 b – it is the beginning of a large-scale modeling effort to fit Webb’s complex data.
The discovery of “VHS 1256 b” demonstrates the James Webb Space Telescope’s unparalleled ability to explore the universe’s mysteries. According to Andrew Skemer, an Associate Professor at the University of California, Santa Cruz, Webb’s observations have provided detailed insights into the planet’s dynamic weather systems, identifying numerous molecules in a single spectrum.