India has successfully started Chandrayaan 3 mission. It has been created by priorly completing the Chandrayaan 1 & 2 mission. If you want to know more about its mission, the purpose, the launching date, and the hardworking team behind it. Then let us keep hovering over the following parts!

India Launches Chandrayaan 3 Mission, Aims to Become Fourth Nation on the Moon

The satellite Chandrayaan-3 was launched today (July 14) at 5:05 a.m. EDT (09:05 GMT; 2:35 p.m. local time in Sriharikota) from the Satish Dhawan Space Centre.

The rocket carried the unmanned lander-rover pair. And the aspirations of the most populous country in the world as it shot into the sky. India has started its most ambitious mission to the moon yet.

Following a planned separation from the LVM3 around 16 minutes after launch, Chandrayaan-3 began its fuel-effective voyage to the moon. It will be entering orbit around the Earth. India will soon join the United States, the former Soviet Union, and China as the fourth nation to set foot on the moon. Assuming the remainder of the mission goes according to plan.

If you are further interested in knowing the second attempt of India at a cost-effective lunar landing, investing around 6 billion rupees ($73 million), then continue reading!

India is Aiming for Low-Cost Space Exploration Milestone

The ambitious indigenous mission costs about 6 billion rupees ($73 million). In an era when many countries compete to establish a long-term presence on the moon. Its achievement would assist India’s growing low-cost space exploration ambitions.

ISRO, the country’s premier space agency, professes to be confident of success this time, said:

With today’s launch, India began its second attempt at a soft lunar landing, nearly four years after Chandrayaan-2’s lander-rover combo crashed into the moon due to a software error.

Chandrayaan 3 mission
Chandrayaan 3 launched atop an LVM3 rocket from Satish Dhawan Space Centre on July 14 at 5:05 a.m. EDT (0905 GMT). (Image Credit: Indian Space Research Organization (ISRO))

This assurance will be tested during the upcoming month as the spacecraft’s thrusters are repeatedly fired to extend its egg-shaped orbit of the Earth. And increase its speed in preparation for being launched into the moon’s orbit. Once there, careful maneuvers are required to securely position the lander-rover pair close to the moon’s south pole. Which is an area that India hopes to be the first to explore.

Now you are wondering about the precise landing capability near the projected landing region for Russia’s Luna 25 spacecraft, so let’s find out more about it!

India’s Chandrayaan-3 Mission Aims for Precision Lunar Landing at the South Pole

Arun Sinha, a former senior scientist at ISRO, told, said:

“This mission is most significant in terms of ultimate precise landing capability of [the] Chandrayaan-3 lander on the specified lunar surface”

Chandrayaan 3
The Chandrayaan-3 lander is seen before being encapsulated in its payload fairing. (Image credit: ISRO)

The landing zone for the mission measures 2.5 miles by 1.5 miles (4 by 2.5 kilometers). And it is located at 69.367621 south latitude and 32.348126 east longitude. It is also near the projected landing region for Russia’s Luna 25 spacecraft, slated to launch in August.

The lunar south pole, a hotspot for space research, is believed to contain large amounts of water ice that might be harvested for rocket fuel. A tantalizing location for moon outposts would be near the south pole because lunar water ice would also be necessary for life support.

Moreover, the challenges that have been faced on the south pole were challenging; let’s know more about these difficulties!

Chandrayaan 3 Mission & Overcoming Challenges of the South Pole Landing

Chandrayaan-3’s arrival, anticipated for August 23 or 24, would be historic; earlier missions that succeeded landed near the moon’s equator, while those that failed aimed to reach the south pole.

The south pole regions receive sunlight at low angles, and the lengthy shadows there make safe landing difficult. In contrast to more approachable equatorial areas, where sunlight is abundant for solar-powered spacecraft, the south polar regions have long shadows.

In addition, the legs on the lander, named Vikram (Sanskrit for “valor”), have been strengthened to help it survive a slightly high landing speed. And the area where the spacecraft can touch down has also been significantly widened to allow some room for error and ultimately increase chances of success, ISRO Chairman S. Somanath said last week during a press briefing.

Moon is one of the go-to points for scientific discoveries, and the Pragyan rover is all set for it! Let’s know how.

Pragyan Rover Set to Explore Lunar Surface, Extending Possibilities for Scientific Discoveries

Providing the landing is successful, a six-wheeled rover called Pragyan (Sanskrit for “wisdom”) will disembark from Vikram and move onto the lunar surface under the guidance of cameras. Its arsenal includes a spectrometer for examining lunar rocks and dirt and a laser-induced spectroscope for zapping targets and determining their chemical makeup.

The lander and the rover are planned to run for one lunar day (about two weeks on Earth), from the moon’s rising to set.

While the solar-powered robotic duo is not expected to survive a frigid night on the moon, “there are faint chances of extra-efficient battery charge,” Sinha told “If this is good, another 14 [Earth] days might be available.”

The following part of the blog is solely based upon the frequently asked questions about this mission and its purposes!

What is the Aim Behind Chandrayaan 3 Mission?

Chandrayaan-3, the current mission, is primarily an opportunity to try again after the previous endeavor of landing a robotic spacecraft on the moon’s surface resulted in a crash and a crater almost four years ago. This undertaking comes when there is a revived enthusiasm for lunar exploration.

Potential Reaching Time & Point of Chandrayaan 3:

The LVM3 M4 vehicle effectively propelled Chandrayaan-3 into its designated orbit. The spacecraft is projected to require approximately a month to travel from Earth to the moon, with an anticipated landing scheduled for August 23.

Why the Chandrayaan has been only Sent to Moon?

Following Chandrayaan-2, this mission aims to showcase a range of capabilities, including achieving lunar orbit, executing a gentle landing on the moon’s surface with a lander, and deploying a rover from the lander to investigate the lunar terrain.

More About Team & Project Director Details of Chandrayaan 3 Mission:

Veeramuthuvel, the project director of Chandrayaan 3, expressed his gratitude to all the stakeholders who played a part in the mission’s success during the event. Veeramuthuvel also mentioned that the eagerly anticipated soft-landing phase marks the commencement of our voyage to the moon. The spacecraft’s progress will be closely monitored from Bengaluru.

Why are Chnadrayaan Missions Happening? Let’s Find Out the Core Purpose!

Chandra has been specifically engineered to detect X-rays emitted by regions in the universe with high energy, including remnants of stellar explosions. Its exceptional sensitivity enables comprehensive black holes, supernovas, and dark matter investigations. Chandra has significantly advanced our comprehension of the universe’s origin, evolution, and ultimate fate through these studies.

Were Chandrayaan 1 and 2 Successful?

The estimated orbital period was approximately 11 hours. Following the successful execution of this mission. India achieved the distinction of becoming the fifth nation to place a vehicle in lunar orbit. The initial Lunar Orbit Reduction Manoeuvre of Chandrayaan-1 took place on November 9, 2008, at 14:33 UTC.

The second mission, Chandrayaan-2, commenced its journey on July 22, 2019, and successfully entered lunar orbit on August 20, 2019. On September 2, 2019, the Vikram Lander was detached. While in a lunar polar orbit approximately 100 kilometers above the moon’s surface.

The Moon has always been a source of fascination for humanity, inspiring myths and legends across different cultures. Howeverour understanding of the Moon has grown in the last century in the last century thanks to space agencies’ efforts worldwide. India has also stepped forward to uncover the mysteries and disclose the myths about the moon. The Indian Space Research Organization (ISRO) launched a series of missions called Chandrayaan to the Moon to learn more about its composition, structure, and history. Chandrayaan-1 launched in 2008 and discovered water on the Moon. ISRO launched Chandrayaan-2, a moon landing project, in 2019. Despite the lander’s crash, the orbiter continues to collect data. ISRO has prepared its next attempt Chandrayaan-3 to land a spacecraft on the moon for flight. ISRO will launch the spacecraft in June 2023.

All these projects highlight India’s expanding capacity for space research and its dedication to expanding humanity’s knowledge of space and expanding humanity’s place in it.

Now, we will discuss the Chandrayaan missions launched from India, which have significantly advanced our understanding of the nearest celestial neighbors.

Let’s start with,

Chandrayaan-1: The First Indian Lunar Space Probe

On October 22, 2008, India’s national space agency, the Indian Space Research Organization (ISRO), officially started its Chandrayaan Missions with Chandrayaan-1, India’s first lunar space probe. The scientists designed the mission to conduct remote sensing studies of the Moon from lunar orbit. It collected data on the lunar surface’s mineralogy and elemental composition. Built at only Rs. 386 crores ($76 million), within three years, it was a low-cost spacecraft. Chandrayaan-1 carried a suite of scientific instruments from India, the United States, and the European Space Agency (ESA), making it a truly international effort.

Chandrayaan Missions: Chandrayaan 1
Image Credit: ISRO

Now, you may need to know,

What were the mission objectives and instrumentation?

Chandrayaan-1 had several objectives, including mapping the Moon in infrared, visible, and X-ray light and prospecting for various elements, minerals, and ice. Some of the particular instruments on board the spacecraft included:

  • To create a three-dimensional atlas of the lunar surface, which would help study the distribution of elements and minerals.
  • Determining the extent and depth of water-ice deposits on the lunar surface is essential for future human settlements.
  • Studying the moon’s mineral composition and geology would help us understand its formation and evolution.
  • To study the moon’s atmosphere, particularly the presence of helium-3, a rare isotope that could be used as a fuel in nuclear fusion.
  • To test new technologies for future space missions. Such as a new imaging spectrometer and a miniaturized synthetic aperture radar.

On the whole,

Is Chandrayaan-1 a success or failure?

The mission started on Oct. 22, 2008, and ended on Aug. 28, 2009. The scientists planned to leave the spacecraft in space for about two years.  But, sadly couldn’t keep exploring due to technical issues. During its operational lifetime of approximately ten months, Chandrayaan-1 made several significant discoveries, including detecting water on the Moon’s surface and mapping various elements and minerals on the lunar surface. However, the mission ended abruptly in 2009 when radio contact was lost with the spacecraft.

ISRO says that this spacecraft has almost all its objectives accomplished by then. So instead of any emergency crash, it is better to dismantle it. Chandrayaan-1 did not crash. But the Indian Space Research Organization (ISRO)  intentionally ended its mission. The spacecraft was in a polar orbit around the Moon. It had completed more than 3,400 orbits and collected a wealth of scientific data. However, communication with the spacecraft was lost and attempts to re-establish contact failed. Intovoid any potential damage or interference with future lunar missions, ISRO intentionally crashed the spacecraft into the lunar surface. The exact location of the impact is unknown. But scientists believe that it is in the Moon’s south pole region.

Later on, ISRO succeeded in building up another spacecraft,

Chandrayaan-2: India’s Ambitious Lunar Lander Mission

One of the Chandrayaan Missions, Chandrayaan-2, also known as 44441, was a landmark Indian lunar mission launched by the Indian Space Research Organization (ISRO) on July 22, 2019. The Geosynchronous Satellite Launch Vehicle Mark III (GSLV-MkIII) carried out the mission. It aimed to explore the uncharted lunar south pole region. With a total mass of 3850 kg and a nominal power of 1000 W, the Chandrayaan-2 mission lasted almost a month, from its launch date until its unfortunate end on August 20, 2019. The mission was a significant milestone in India’s space exploration program and had several key objectives, including mapping the lunar surface, studying the composition of the Moon’s atmosphere, and searching for evidence of water on the lunar surface.

Chandrayaan Missions: Chandrayaan 2
Image Credit: ISRO

Let’s take a closer look on,

What were the mission objectives and instrumentation?

Chandrayaan-2 had several objectives, including conducting high-resolution remote sensing of the lunar surface, studying the Moon’s water ice deposits, and characterizing the Moon’s tenuous atmosphere. Some of the special instruments on board the spacecraft included:

  • The mission aimed to study the lunar surface’s topography, mineralogy, and geology to understand its origin and evolution.
  • Chandrayaan-2 aimed to detect and map the distribution of water ice on the Moon’s surface, which could be a potential resource for future space exploration.
  • The mission aimed to study the Moon’s tenuous atmosphere and understand its composition and dynamics.
  • Chandrayaan-2 also aimed to demonstrate India’s capabilities in soft landing on the lunar surface and rover mobility on the Moon.

Are you wondering,

How did Chandrayaan-2 fail?

The Chandrayaan-2 mission, unfortunately, met an untimely end when communication was lost during the lander descent at an altitude of about 2.1 km. Despite crashing on the lunar surface at 70.881 S, 22.784 E, the lander appeared to remain in one piece. But all communications and operations were impossible. The rover, which was supposed to be deployed shortly after landing, needed help to complete its mission. 

Although the lander and rover portions of the mission were planned for only 14-15 days, the orbiter continues to operate and gather valuable data about the Moon. Despite the challenges faced during the mission, Chandrayaan-2 was a significant achievement for India’s space exploration program. It contributed to our understanding of the Moon’s composition and the potential for future human exploration. The lessons learned from this mission will undoubtedly inform future lunar missions and continue to advance the field of planetary science.

Last but not least, 

Chandrayaan-3: India’s Next Lunar Mission:

After the success of Chandrayaan-1 and the ambitious Chandrayaan-2 mission failure, India’s space agency, the Indian Space Research Organization (ISRO), is not stopping its Chandrayaan Missions. Chandrayaan-3, also known as Chandrayaan3, is the upcoming lunar mission of the Indian Space Research Organization (ISRO). Scientists have designed it to pick up where the Chandrayaan-2 mission left off. The primary objective of this mission is to further explore and study the Moon’s surface, with a specific focus on the south polar region. 

The mission will be launched using the Geosynchronous Satellite Launch Vehicle Mark III (GSLV-MkIII) from the Satish Dhawan Space Centre in Sriharikota, India. With a mass of 1752 kg and a nominal power of 738 W, Chandrayaan-3 is expected to be launched in June 2023. The scientists originally planned to launch the mission in 2020. But has been delayed due to technical issues and the COVID-19 pandemic. Here’s what we know so far about Chandrayaan-3.

Chandrayaan Missions: Chandrayaan 3
Image Credit: ISRO

Now let us take a closer look on,

What is the mission design?

Chandrayaan 3 is a lunar mission scheduled to launch in 2023 from Sriharikota, India, using a GSLV Mark 3 heavy-lift launch vehicle. After entering an elliptic parking orbit, the propulsion module will bring the lander/rover into a 100 km circular polar lunar orbit. Then it will separate from it. The lander will then touch down with the rover in the Moon’s south polar region, near 69.37 S, 32.35 E. 

The touchdown velocity will be less than 2 m/s vertical and 0.5 m/s horizontal to ensure a safe landing. The propulsion module/communications relay satellite will remain in lunar orbit to enable communications with Earth, with Chandrayaan 2 serving as a backup relay. The lander and rover are designed to operate for one lunar daylight period, which is about 14 Earth days. This mission will enable further exploration of the lunar surface and allow for studying the Moon’s geology and resources.


What scientific instruments are onboard Chandrayaan 3?

Chandrayaan-3, the third lunar mission by the Indian Space Research Organization (ISRO), will consist of a propulsion module, a lander, and a rover. The propulsion module generates 758 W power and carries the lander and rover to the moon. The lander has various sensors to ensure a safe touchdown, and the rover is equipped with navigation cameras and a solar panel that generates 50 W power. 

The lander will carry four scientific instruments: Chandra’s Surface Thermophysical Experiment (ChaSTE), the Instrument for Lunar Seismic Activity (ILSA), the Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA), and a passive laser retroreflector array provided by NASA. The rover will carry two instruments to study the local surface elemental composition. These include an Alpha Particle X-ray Spectrometer (APXS) and Laser Induced Breakdown Spectroscope (LIBS).

The propulsion module/orbiter will carry the Spectropolarimetry of the Habitable Planet Earth (SHAPE) experiment to study Earth from lunar orbit. It will launch in June 2023, using the GSLV-MkIII launch vehicle from Sriharikota, India.


What are the objectives of Chandrayaan-3?

The objectives of this Chandrayaan Mission are similar to that of its predecessor, Chandrayaan-2. The mission aims to conduct a soft landing on the lunar surface and deploy a rover to explore the surface in greater detail. The primary scientific goals of the mission are:

  • To study the composition of the lunar surface: Chandrayaan-3 will carry scientific instruments to study the lunar surface’s mineralogy, elemental composition, and water content. This data will help scientists understand the Moon’s formation and evolution better.
  • To study the lunar environment: The mission will also study the lunar environment. It includes the Moon’s tenuous atmosphere, magnetic field, and radiation environment. This data will help scientists understand the challenges faced by future human missions to the Moon.
  • To explore the South Pole-Aitken Basin: The landing site for Chandrayaan-3 is expected to be near the Moon’s South Pole-Aitken Basin. This basin is particularly interesting to scientists because it is the largest and oldest impact basin on the Moon. Studying the basin’s composition and structure could shed light on the early history of the Moon and the solar system.

What are India’s expectations with Chandrayaan Missions?

India is not anywhere close to stopping the progress of uncovering the mysteries of the moon. Regardless of the Chandrayaan-2 failure, India heads up to discover more of the moon’s surface and neighboring celestial stars. India is now looking at its masterpiece with fixed eyes to accomplish the objectives of Chandrayaan-2.

Published by: Sky Headlines