Since 1995, scientists have found more than 4,000 Earth-like exoplanets. It would surely be your surprise that these planets are outside our solar system. NASA’s Exoplanet Exploration page says the Kepler Space Telescope found most of these.  Astronomers really wanted to find the first “alien Earth.” The Earth-like planets in the Milky Way.  New discoveries show that many small, rocky planets like ours are all over the galaxy.

How Earth-like Exoplanets could Resemble the Earth?

A planet should be small and rocky, like Earth, if it wants to be a good place for life. Besides this, it also needs to be in the right spot around its star, not too hot or too cold. Henceforth, this special spot is sometimes called the “Goldilocks” zone, where it’s just right for liquid water on the planet. As telescopes get better, we’ll also look at other things like what the planet’s air is like and how active its star is.

Earth-like Exoplanets
(Image credit: Nazarii Neshcherenskyi via Getty Images)

Even though finding a planet just like Earth is hard, we’ve found some that are pretty close to being similar to our home.

Earth-like Exoplanets: Let’s Have a Quick Glance!

To answer your quest of how many Earth like planets are there in the universe. We have curated a list of Earth-like exoplanets. So, let’s have a keen and some valuable content!

Gliese 667Cc:

Exoplanets List and Names 2023
An artist’s impression of the surface of Gliese 667Cc. (Image credit: ESO/L. Calçada)

This planet is merely 22 light-years away from us. It’s at least 4.5 times heftier than Earth, as indicated by NASA’s Jet Propulsion Laboratory. This exoplanet whirls around its host star in a mere 28 days, but here’s the twist. The star is a cooler red dwarf. Which is chillier than our sun. This chill factor led scientists to speculate that Gliese 667Cc resides within the habitable zone. Where conditions might allow liquid water to exist.

However, science says that it is one of the Earth-like Exoplanets, but a very noteworthy point arises. Gliese 667Cc was initially detected using the European Southern Observatory’s 3.6-meter telescope in Chile. And it might be positioned too close to the red dwarf. Because the exoplanet is so close to the red dwarf star, it could be in danger of getting heated up by the star’s strong bursts of light called flares.

Kepler-22b:

Kepler-22b is positioned 600 light-years from us. It holds a unique distinction. It clinched the title of being the very first planet discovered by Kepler within its parent star’s habitable zone. However, there’s a catch. It is world dwarfs Earth in size. It is measuring about 2.4 times larger. What remains unclear is the composition of this “super-Earth.” Is it rocky, liquid, or perhaps gaseous? The answer is vague for now!

Besides this, let us tell you an interesting fact too. Kepler-22b’s orbit takes about 290 days, which bears a resemblance to Earth’s 365-day cycle.  Being one the resembled Earth-like Exoplanets, it circles a G-class star, akin to our sun, but with a twist. This star is smaller and cooler compared to our familiar sun.

Habitable Exoplanets
Artist’s illustration of Kepler-69c. (Image credit: NASA Ames/JPL-Caltech/T. Pyle)

This Earth like exoplanet Kepler-22b is located a vast 2,700 light-years away. It presents another enigma. This world succeed the Earth’s size by about 70 percent. However, the makeup of Kepler-69c remains a mystery, much like its counterparts.

Taking a closer look, Kepler-69c takes a brisk 242-day journey to complete one orbit around its star. This places it in a position in its own solar system similar to where Venus resides in ours. An interesting distinction arises in the form of Kepler-69c’s host star. It’s roughly 80 percent as radiant as our sun. Which if giving us a hit of the possibility that this planet snuggles within its star’s habitable realm.

Kepler-62f:

NASA has discovered a planet called Kepler-62f. It is about 40% bigger than Earth. This planet goes around a star that’s cooler than our Sun. It takes 267 days for Kepler-62f to complete one orbit. And it’s in the part of space that’s just right for living things.

Here’s an interesting fact: Even though Kepler-62f is closer to its star than Earth is to the Sun, the star doesn’t give off as much light.

Kepler-62f is quite far away, around 1,200 light-years from us. It’s a good size for a planet, which means it might be rocky like Earth. And there’s a chance it could have oceans, which is pretty exciting!

TRAPPIST -1e:

This planet is just a little bit bigger than Earth, not more than 10% larger. Among the group of planets, one called TRAPPIST-1e stands out. Scientists think it could be a good place for life we know. It’s in the habitable zone, but it’s on the outer edge.

Earth-like Exoplanets
This illustration shows the TRAPPIST exoplanets nearest their star. (Image credit: NASA/JPL-Caltech)

Then there’s Kepler-186f. It’s different from Earth because it only gets a third of the energy from its star. This planet is about 500 light-years away from us.

Around a star called TRAPPIST-1, there’s an amazing group of planets. They’re the most Earth-sized planets we’ve found in a zone where conditions might be right for life. That is the reason science says it is one the most acceptable Earth-like exoplanets. There are seven of them altogether, and one of these special planets is called TRAPPIST-1e. It’s the most likely place where life could exist, at least as we know it.

Kepler-186f’s:

Habitable Planets
A planet the size of Kepler-186f is likely to be rocky. (Image credit: NASA Ames/JPL-Caltech/T. Pyle)

Kepler-186f’s star is a red dwarf, which makes it not exactly like Earth. This interesting planet is signaling to us from a faraway distance of around 500 light-years.

What exoplanet is most like Earth?

Kepler-452b, occasionally dubbed as Earth 2.0 or Earth’s Cousin due to its features, is a captivating super-Earth exoplanet. This world gracefully revolves along the inner boundaries of its star Kepler-452’s habitable zone. Notably, Kepler-452b stands as the sole inhabitant of this planetary system. Its other identity, Kepler Object of Interest KOI-7016.01, holds relevance in the astronomical community.

Habitable zone
An artist’s impression compares Kepler 452b with Earth. (Image credit: NASA/Ames/JPL-Caltech/T. Pyle)

Are there any Earth-like exoplanets?

  • Gliese 667Cc.
  • Kepler-22b.
  • Kepler-69c.
  • Kepler-62f.
  • Kepler-186f.
  • Kepler-442b.
  • Kepler-452b.
  • Kepler-1649c.

What is the closest Earth-like exoplanets?

Merely four light-years distant, Proxima Centauri b holds the esteemed title of being our nearest known exoplanetary neighbor. This intriguing celestial body, known as Proxima b, falls within the super Earth category. It gracefully orbits an M-type star. Weighing in at 1.27 times the mass of Earth, this exoplanet completes its orbit around its star in a mere 11.2 days. Positioned at a distance of 0.0485 astronomical units (AU) from its star, Proxima b entered our awareness with its discovery announcement in 2016.

Have we found another planet like Earth?

NASA researchers have just unveiled an exciting discovery. They’ve come across a planet known as TOI 700 e, which boasts a striking resemblance to Earth. The size and shape of TOI 700 e are nearly identical to our own planet, standing at about 95%. Adding to its intrigue, this newfound world features a solid, rocky exterior. What’s even more captivating is that TOI 700 e occupies a special place within its star’s habitable zone, suggesting the tantalizing possibility of water existing on its surface.

Does Kepler-452b have humans?

The presence of life on Kepler-452b remains uncertain, yet intriguing parallels with Earth emerge. Notably, this exoplanet shares a resemblance with our own world. Kepler-452b, for instance, takes approximately 385 Earth days to gracefully complete its orbit around its star. This duration is just slightly extended compared to the span of one Earth year.

What habitable planet is 4 light years?

Astronomers have caused quite a stir with their latest revelations about Proxima b—an exoplanet deemed “highly habitable.” This distant world is merely a short 4.2 light-year hop away from Earth. The scientific community is abuzz with excitement as they contemplate the potential significance of this discovery. It’s believed that Proxima b might be making significant impact across the cosmos, as it possesses conditions that could support vast oceans of liquid water.

What other planet can we live on?

In the most recent turn of events, a groundbreaking discovery unfolded. Merely last year, scientists revealed the existence of yet another Earth-like planet. This remarkable world orbits around Proxima Centauri, one of our nearest neighboring stars. Remarkably, this planet stands as the prime contender in our search for a suitable habitat for human life.

Is there a planet like Earth in the habitable zone?

Using information from NASA’s Transiting Exoplanet Survey Satellite, scientists have done something incredible. They’ve found a planet called TOI 700 e that’s about the same size as Earth. It’s in a good spot around its star, where it’s not too hot or too cold. This special area is where water on a planet could be liquid.

How the Earth-like Exoplanets can Paves the Way in Space Science?

Finding star systems with planets like Earth in this special area is really important. It helps scientists learn more about how our own solar system began.

In the past, many of these planets might have lost their water when they were young. But in 2018, a study suggested that some of these planets could have even more water than Earth’s oceans.

Scientists define the hopeful habitable zone as the area around a star where there could have been liquid water at some point in the past. It goes beyond the more conservative habitable zone, where scientists think liquid water might have been possible for a long time.

The habitable exoplanet, SPECULOOS-2c or LP 890-9c, was found in September 2022. It circles its star every 8.5 Earth days at a distance of just 1.7 million miles (2.8 million kilometers), yet its diameter is 40% higher than Earth’s.

A Potentially Habitable Exoplanet is Near a Tiny Red Dwarf Star:

However, because the red dwarf is tiny and chilly, it can be cool even near the star. LP 890-9c  is close to the inner boundary of the star’s zone, which denotes the region in which a planet with an atmosphere similar to Earth might sustain liquid water on its surface.

Habitable Exoplanet is in Climatic Spheres:

LP 890-9c may be in many climatic and atmospheric states, and the James Webb Space Telescope may be able to discriminate between them, according to a new study conducted by Lisa Kaltenegger, director of the Carl Sagan Institute at Cornell University.

What is the Location of the Exoplanet?

Similar to how Venus is situated in our solar system, which is similarly at the inner border of the zone, LP 890-9c, Habitable Exoplanet is situated in its planetary system.

A planet in Venus’ position may continue to support life. Still, at some point over its 4.5 billion-year existence. Venus became enmeshed in a feedback loop caused by a runaway greenhouse effect.

Venus previously had water on its surface, but that evaporated due to the planet’s dense carbon dioxide atmosphere.

Why Some Planets Would Not Get Venus’s Identical Manner?

Only some planets towards the inner border of the zone will, however, develop in Venus’s identical manner. One is because Venus lacks a magnetic field to block the solar wind, a torrent of charged particles emanating from the sun.

As a result, the planet’s water supply was reduced due to the solar wind’s increased ability to transport away hydrogen atoms that the sun’s ultraviolet radiation had broken off water molecules.

LP 890-9c, habitable exoplanet could fend off the stellar wind from its star and preserve the water vapor in its atmosphere if it has a powerful magnetic field.

Kaltenegger said in a release:

“Looking at this planet will tell us what’s happening on the inner edge of the habitable zone—how long a rocky planet can maintain habitability when it starts to get hot,” 

The Crisp Details About the Chemical Composition of Habitable Exoplanets:

The planet was modeled by Kaltenegger’s team using measurements of its mass and radius.

The models also included assumptions about the planet’s chemical composition, surface pressure and temperature, atmospheric depth, and cloud cover. These later elements are unknown at the moment.

The planet may be cratered and devoid of atmosphere for all we know. This is a likely scenario given that red dwarfs are frequently subject to powerful flares that might rob an orbiting planet of its atmosphere.

Deep Analytical Study of the Characteristics of Exoplanets:

The group developed five distinct models that speculated on the characteristics of LP 890-9c, the Habitable Exoplanet. These varied from a hotter version of Earth to varying concentrations of atmospheric water vapor and greenhouse gases, with the ultimate model approaching Venus’s hellish atmosphere of choking carbon dioxide.

Three Transits Study of Exoplanet by JWST:

According to a separate study led by Jonathan Gomez Barrientos of the California Institute of Technology, JWST would only need to observe three transits of LP 890-9c, across the face of its host star to confirm the presence of a steamy, water-rich atmosphere. And eight transits would be sufficient to determine whether LP 890-9c is more like Venus, and 20 transits would be sufficient to find evidence for the still-hot Earth scenario.

Theoretically, it should only take six months to complete the observations because the planet transits its star every 8.5 Earth days.

Testament of Targets on Earth:

The first target where we may test these many possibilities is our planet, according to Kaltenegger.

“If it’s still a hotter Earth—hot, but with liquid water and conditions for life—then the inner edge of the habitable zone [around all stars] could be teeming with life.”

Although JWST cannot directly detect liquid water on the planet’s surface, it can establish whether the atmosphere is suitable for the presence of liquid water.

Even if LP 890-9c,  proves to be too hot for life, the discoveries may still have something to tell us about the future of Earth. Over a billion years, the sun will gradually become brighter and warmer as it matures, making Earth too hot for life and causing the seas to evaporate. We can learn more about Earth’s future by examining a planet other than Venus that has previously experienced this period or possibly has even managed to withstand it for the time being.

Let’s Conclude the Habitable Exoplanet with Kaltenegger’s Final Words:

“Habitable exoplanet will teach us something fundamental about how rocky planets change with rising starlight and about what will eventually happen to us and Earth.”