This NASA/ESA photograph of the Hubble Space Telescope shows the serenely drifting jellyfish galaxy JW39. This galaxy, one of many jellyfish galaxies Hubble has observed over the past two years, lies around 900 million light-years away in the constellation Coma Berenices.

Hubble Photographs a Moving Galaxy!

What are the effects of galaxy clusters on the shape and gas content of galaxies?

Although it seems serene, this jellyfish galaxy is actually drifting in a galaxy cluster, which is an extremely dangerous environment. The gravitational attraction of larger companions frequently warps galaxies in galaxy clusters, twisting them into a variety of designs. Additionally, a searingly hot plasma known as the intracluster medium dominates the area between galaxies in a cluster. Despite the extreme thinness of this plasma, galaxies moving through it have an almost current-like sensation, and this interaction can deplete galaxies of star-forming gas.

What Phenomenon Creates the Distinctive Trailing Tentacles in Jellyfish Galaxies?

Ram-pressure stripping, or the interaction between the intracluster medium and the galaxies, is what causes the jellyfish galaxy’s trailing tentacles. As JW39 traveled through the cluster, the intracluster medium’s pressure sucked away gas and dust, creating long trailing ribbons of star formation that now extend away from the galaxy’s disk.

What is the impact of harsh environments on star formation in jellyfish galaxies?

Astronomers used Hubble’s Wide Field Camera 3 to investigate these trailing tendrils in great detail because they represent a particularly hostile environment for star formation. Surprisingly, researchers found little difference between star production in the galaxy disk and star formation in the ‘tentacles’ of jellyfish galaxies.

Hubble telescope recently captured an image of a host of astronomical objects scattering in the universe. Galaxies ranging from stately spirals to fuzzy ellipticals scatter across the telescope image. While a smattering of bright foreground stars is closer to home. The small galaxy UGC 7983 sketchy shape appears as a hazy cloud of light visible in the middle of the image. In the constellation Virgo, around 30 million light-years from Earth, the small dwarf irregular galaxy UGC 7983 is located. Moreover, some researchers say that it is identical to the very earliest galaxies in the universe.

A relatively nearby astronomical interloper is also visible in the picture. Across the upper left-hand side of the image a minor asteroid in our own solar system streaks. Split by small gaps the asteroid’s trail is visible as four streaks of light. The four different exposures that were merged to make up this image are represented by these light streaks. Filter modifications inside the Hubble telescope Advanced Camera for Surveys between exposures can be seen in the tiny gaps between each observation.

In order to observe every known galaxy close to the Milky Way capturing an asteroid was a fortunate side effect of a larger effort. However, Of all the Milky Way’s near galactic neighbors, Hubble had imaged roughly 75%. A group of astronomers suggested using the gaps between longer Hubble observations to capture images of the remaining 25%. To fill gaps in the Hubble telescope observing schedule and in our knowledge of nearby galaxies, the project was an elegant and efficient way.

 

Published by: Sky Headlines