James Webb Telescope captured two young stars’ images. These two stars are Herbig-Haro 46/47 and covered in orange-white splotch.

Young Stars
NASA’s James Webb Space Telescope has captured a tightly bound pair of actively forming stars, known as Herbig-Haro 46/47, in high-resolution near-infrared light. Look for them at the center of the red diffraction spikes, appearing as an orange-white splotch. Herbig-Haro 46/47 is an important object to study because it is relatively young – only a few thousand years old. Star systems take millions of years to fully form. Targets like this give researchers insight into how much mass stars gather over time, potentially allowing them to model how our own Sun, which is a low-mass star, formed – along with its planetary system.
Credits: Image: NASA, ESA, CSA. Image Processing: Joseph DePasquale (STScI)

Webb Telescope Captures Stunning Images of Young Stars and Their Fiery Orange Lobes

NASA’s James Webb Space Telescope has captured fascinating images of two young stars, known as Herbig-Haro 46/47, in vivid near-infrared light. To spot them, just follow the bright pink and red spikes until you reach the center, where you’ll find the stars within the orange-white splotch. These stars are surrounded by a hidden disk of gas and dust that fuels their growth as they gain more mass.

What is so cool about the orange-white splotch in which these young stars are covered?

The coolest part is the fiery orange lobes that spread out on both sides from the center stars. This material was shot out from the stars as they swallowed and expelled gas and dust around them over thousands of years.

When the more recent ejections collide with older material, they shape these lobes differently, like turning a big fountain on and off randomly. This creates beautiful billowing patterns, and some jets release more material or move at higher speeds. Why does this happen? It’s probably because of the amount of material that fell onto the stars at specific times.

What are the key features observed in the recent ejections of the blue cloud of Herbig-Haro 46/47?

Let’s take a closer look at the stars’ recent ejections – they show up as thread-like blue lines just below the red spike at 2 o’clock. On the right side, these ejections form wavy patterns with breaks and end in a cool light purple circle within the thick orange area. On the left, we can see lighter blue, curly lines, though sometimes they’re hidden by the bright red spike.

These jets play a crucial role in star formation because they control how much mass the stars gather. The stars are surrounded by a small disk of gas and dust, like a tight band tied around them.

The Effervescent Blue Cloud: Let’s Know More About it!

Now, check out the second most prominent feature: the effervescent blue cloud. It’s a dense region of dust and gas, also known as a Bok globule. In visible light, it appears almost entirely black, but the James Webb Space Telescope’s near-infrared image lets us see through the hazy layers of the cloud. This reveals more of Herbig-Haro 46/47 and even shows distant stars and galaxies beyond it. You’ll notice the nebula’s edges in a soft orange outline, forming a backward L shape along the right and bottom.

What is the significance of the material ejected by young stars in the process of star formation?

The lobes we see are made up of material that the stars once swallowed from the dusty disk around them and then later expelled into space. These ejections play a vital role in the process of star formation. Picture them like a fountain, quickly turning on and off, creating beautiful patterns in the cosmic pool. Once these young stars finish growing, they will bring order to this chaotic scene.

In the background, you can’t help but notice the vast collection of stars and galaxies scattered across our universe. Each one, whether old or new, big or small, holds its significance in the vast expanse we call home.

What does the vast collection of stars and galaxies reveal about our universe?

Galaxies offer insights into the organization of matter on cosmic scales, providing valuable information to comprehend the universe’s nature and history. Scientists analyze both the present arrangement and the changes in organization across cosmic time to gain a deeper understanding of these fundamental processes.

What is the significance of the nebula in shaping the jets from the central stars?

Let’s explore the significance of the nebula in shaping the jets from the central stars. When the ejected material collides with the nebula on the lower left, it creates opportunities for the jets to interact with molecules in the nebula, causing both to light up.

Now, look at two other areas to compare the lobes’ asymmetry.

  • In the upper right, you’ll notice a blobby, sponge-shaped ejecta that appears separate from the larger lobe. Only a few semi-transparent wisps of material point toward the larger lobe, and there are almost transparent, tentacle-like shapes drifting behind it, like cosmic streamers.
  • On the lower left, beyond the hefty lobe, you’ll find an arc. Both the blob and the arc consist of material pushed farthest, possibly from earlier ejections. The arcs seem to point in different directions, suggesting they may have come from different outflows.

Take a closer look at the image. Although it seems like Webb captured Herbig-Haro 46/47 edge-on, one side is slightly closer to Earth, surprisingly the smaller right half. The left side, even though it’s larger and brighter, is pointing away from us.

Why Webb Space Telescope’s image of this cosmic nebula is so exceptional?

Throughout millions of years, the stars in Herbig-Haro 46/47 will fully form. And the stunning, colorful ejections we see now will eventually disappear. The binary stars will then become the main focus against a background filled with galaxies.

The James Webb Space Telescope (JWST) reveals such intricate details of Herbig-Haro 46/47 for two reasons.

  1. Firstly, the object is relatively close to Earth.
  2. Secondly, the telescope’s image is a combination of multiple exposures, adding depth to the picture.

Located 1,470 light-years away in the Vela Constellation, Herbig-Haro 46/47 is a cosmic nebula—a huge cloud of dust and gas. JWST’s special capabilities allow us to see through this haze and study what’s inside. Which is providing the most detailed portrait of these stars to date. The nebula is the reason why the stars’ jets appear to light up. As ejected material collides with the nebula on the lower left, it takes on wider shapes due to interactions with molecules within the nebula.

The image we have now is a sparkling spectacle, worth more than a thousand words. Even with all the information we’ve discussed, astronomers believe there’s still so much more to learn. They also believe about how stars form from this extraordinary picture.

From our cosmic backyard in the solar system to faraway galaxies near the beginning of time, NASA’s James Webb Space Telescope has done what it said it would in its first year of science operations to show us the universe as we’ve never seen it before. NASA shared a picture of small Sun-like stars forming an area in the Rho Ophiuchi cloud complex taken by Webb to mark the end of a successful first year.

Sun-like stars
The first-anniversary image from NASA’s James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disk, the makings of future planetary systems. Credits: NASA, ESA, CSA, STScI, Klaus Pontoppidan (STScI)

What were the perspectives on Webb after the Sun-like stars’ discovery?

Scientists had a realization of how Webb has altered the way humans perceive the solar system. Bill Nelson, who is in charge of NASA, said;

“In just one year, the James Webb Space Telescope has changed how people see the universe. For the first time, they can look into dust clouds and see light from faraway parts of the universe. Every new image, such as Sun-like stars, is a discovery that lets scientists worldwide ask and answer questions they could never have thought of before.” 

First of all, let’s have a look at Webb before discussing Sun-like stars. Webb is an investment in American innovation and a science achievement made possible by NASA’s foreign partners who share a can-do attitude and want to push the limits of what is possible. Thousands of engineers, scientists, and leaders have dedicated their lives to this goal, and their work will continue to help us learn more about the world and where we fit in it.

Webb is one of the most appreciated tools for space scientists

On the first anniversary of its launch, Nicola Fox, associate administrator of NASA’s Science Mission Directorate in Washington, said,

“The James Webb Space Telescope has already lived up to its promise to reveal the universe. It has given us a breathtaking treasure trove of images and science that will last for decades.” 

“Webb is an engineering marvel built by the best scientists and engineers in the world. It has given us a deeper understanding of galaxies, stars, and the atmospheres of planets outside of our solar system, setting the stage for NASA to lead the world into a new era of scientific discovery and the search for habitable worlds.”

Klaus Pontoppidan was the Webb project scientist at the Space Telescope Science Institute in Baltimore, Maryland, from before the telescope’s launch until the end of its first year of operation. once said;

“Webb’s picture of Rho Ophiuchi gives us a clearer look at a very short time in the life of a star. Our own Sun went through something similar a long time ago. Now we have the technology to see the beginning of another star’s story,” 

Sun-like stars
NASA’s James Webb Space Telescope has produced the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. Credits: NASA, ESA, CSA, and STScI

How was the image of Sun-like stars the Webb captures?

Webb’s picture of Sun-like stars shows an area with about 50 young stars, all about the same size as the Sun or smaller. Where there is a lot of dust, where protostars are still forming, it is darkest and densest. Huge bipolar jets of molecular hydrogen, shown in red, dominate the image. They stretch across the top third of the picture horizontally and vertically on the right.

When a star first breaks through its birth covering of cosmic dust, it sends a pair of opposite jets into space, just like a baby does when she stretches her arms out for the first time. In the lower part of the picture, the star S1 has made a bright cave out of dust. Among all other Sun-like stars, it’s the only star in the notion much bigger than the Sun.

The new Webb picture today shows the Sun-like star-forming area closest to us. It is only 390 light-years away, so we can closely see it because no stars are in the way. Some of the stars in the picture have shadows that point to protoplanetary disks, which are possible planetary systems in the making. In this picture from the Webb telescope, the galaxies look like bright, shining spots; some are blurry because of gravitational lensing. The shape of Webb’s mirrors makes the stars in the center look hopeful with six-pointed diffraction spikes.

The popularity of Webb captured images of Sun-like stars

Webb has kept its promise to show us more of the universe than ever before. Its first deep field picture was shown live at the White House by President Joe Biden, Vice President Kamala Harris, and Nelson. But Webb showed us much more about the early universe than faraway galaxies; Sun-like stars by Webb are an example.

Eric Smith, associate director for research in the Astrophysics Division at NASA Headquarters and Webb program scientist, said;

“Now that we have a year’s worth of data from targets all over the sky, it’s clear how many kinds of science Webb can look into. Webb’s first year of science has taught us new things about our universe and shown that the telescope can do more than we thought it could. This means that future discoveries like Sun-like stars will be even more amazing.”

The science community worldwide has spent the last year looking over Webb’s first public data and figuring out how to use it.

How can Webb be useful for space study?

Scientists are most excited about Webb’s precise spectra, the specific information that can be taken from light by the telescope’s spectroscopic equipment. Webb’s scopes have proven the distances of some of the farthest galaxies ever seen and found the oldest and most distant supermassive black holes. It has discovered more about the atmospheres of planets (or the lack of atmospheres) than ever before.

They have also cut down what kinds of atmospheres may exist on rocky exoplanets for the first time. And they have also found the chemical makeup of Sun like stars nurseries and protoplanetary disks by finding water, biological molecules with carbon in them, and other things. Webb’s observations have led to hundreds of science studies that answer questions that have been around for a long time and raise new questions for Webb to answer.

What is Webbs’s significance regarding life on the planet Earth?

Webb’s views of our solar system, including Sun-like stars, the part of space we know best, also show its broad science. Webb shows faint rings of gas giants with moons out of the darkness. In the background, Webb shows galaxies that are very far away. By comparing the water and other chemicals in our solar system to those in the disks of other, much younger planetary systems, Webb is helping to figure out how Earth became the perfect place for life as we know it.

NASA’s Goddard Space Flight Center’s Webb Senior Project Scientist Jane Rigby said,

“After a year of science, we know exactly how powerful this telescope is, and we’ve delivered spectacular data and discoveries.” 

“For year two, we’ve chosen a set of bold observations that build on everything we’ve learned so far. Webb’s science mission is just getting started. There is so much more to come.”



The James Webb Space Telescope has unveiled a breathtaking image showcasing the delicate interplay between dust, star clusters, and luminous tendrils of gas. This composite image, captured using two of Webb’s instruments, reveals the barred spiral galaxy NGC 5068, with its prominent central bar visible in the upper left corner. NASA Administrator Bill Nelson presented this captivating image during a special event with students at the Copernicus Science Centre in Warsaw, Poland.

NGC 5068: A Galaxy in Focus:

Situated approximately 20 million light-years away in the constellation Virgo, NGC 5068 takes center stage in this image. Its central regions, teeming with vibrant star formation, have been selected as part of an ambitious campaign to amass a wealth of observations on nearby galaxies and their stellar birth processes. Notable examples from this celestial collection include IC 5332 and M74, both of which have provided astronomers with valuable insights into the profound implications of star formation within NGC 5068.

Astronomy’s Crucial Insights:

Observations of star formation are highly significant in numerous branches of astronomy, ranging from understanding the physics of interstellar plasmas to comprehending the evolution of entire galaxies. By closely examining the birth of stars within NGC 5068 and other neighboring galaxies, astronomers hope to catalyze major scientific breakthroughs using the initial data furnished by Webb.

Building on Previous Discoveries:

Webb’s observations complement and enhance previous studies conducted using various telescopes, including the iconic Hubble Space Telescope and ground-based observatories. The telescope has amassed a collection of images featuring 19 nearby star-forming galaxies, with NGC 5068 as a prominent inclusion. These images have been combined with Hubble’s records of 10,000-star clusters, the Very Large Telescope’s spectroscopic mapping of 20,000 star-forming emission nebulae, and the Atacama Large Millimeter/submillimeter Array’s observations of 12,000 dense molecular clouds within NGC 5068. This comprehensive approach, spanning the electromagnetic spectrum, provides astronomers with an unprecedented opportunity to assemble intricate details about the fascinating process of star formation within NGC 5068 and gain deeper insights into its composition.

Webb’s Unique Perspective:

With its exceptional capability to penetrate the obscuring veils of gas and dust enveloping nascent stars within NGC 5068, the James Webb Space Telescope is ideally suited to investigate the intricate mechanisms governing star formation. Unlike visible-light observatories such as Hubble or the VLT, Webb’s infrared vision, facilitated by its MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera), enables astronomers to peer through colossal dust clouds within NGC 5068 and capture the unfolding processes of star birth. This captivating image merges the capabilities of these two instruments, providing an unparalleled glimpse into the composition and dynamics of star formation within NGC 5068.

spiral galaxy NGC 5068
In this image of the barred spiral galaxy NGC 5068, from the James Webb Space Telescope’s MIRI instrument, the dusty structure of the spiral galaxy and glowing bubbles of gas containing newly-formed star clusters are particularly prominent. Three asteroid trails intrude into this image, represented as tiny blue-green-red dots. Asteroids appear in astronomical images such as these because they are much closer to the telescope than the distant target. As Webb captures several images of the astronomical object, the asteroid moves, so it shows up in a slightly different place in each frame. They are a little more noticeable in images such as this one from MIRI because many stars are not as bright in mid-infrared wavelengths as they are in near-infrared or visible light, so asteroids are easier to see next to the stars. One trail lies just below the galaxy’s bar, and two more in the bottom-left corner.
Credits: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team


Webb Space Telescope Unveils Secrets from the Cosmos
This view of the barred spiral galaxy NGC 5068, from the James Webb Space Telescope’s NIRCam instrument, is studded by the galaxy’s massive population of stars, most dense along its bright central bar, along with burning red clouds of gas illuminated by young stars within. This near-infrared image of the galaxy is filled by the enormous gathering of older stars that make up the core of NGC 5068. The keen vision of NIRCam allows astronomers to peer through the galaxy’s gas and dust to closely examine its stars. Dense and bright clouds of dust lie along the path of the spiral arms: These are H II regions, collections of hydrogen gas where new stars are forming. The young, energetic stars ionize the hydrogen around them, creating this glow represented in red.
Credits: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

The universe is a vast and mysterious place, filled with secrets that have puzzled humanity for centuries. For many years, telescopes have been our eyes into the cosmos, allowing us to uncover some of its greatest mysteries. NASA James Webb Space Telescope is a marvel of engineering and a key to unlocking the mysteries of the cosmos. This great time machine has allowed us to look back 13.5 billion years to the beginning of time itself. In just a few months, NASA’s JSWT has shed light on its deepest mysteries

But what exactly makes the JWST so special, and what has it already achieved? We will be discussing all the achievements of JWST, but first, we would like to give a quick flashback about JWST. Let’s start with.

Quick facts:

JSWT’s state-of-the-art design and cutting-edge capabilities have revolutionized our understanding of the universe like never before. Here are some quick facts about the Webb telescope that you might find interesting:

  • The James Webb Space Telescope (JWST) was originally known as the Next Generation Space Telescope and was renamed in 2002 to honor James E. Webb, who served as the highest-ranking official for NASA from 1961 to 1968. Webb is credited with transforming NASA from a disconnected organization into a highly coordinated machine. However, the decision to name the JWST after him was controversial due to his alleged role in firing employees suspected of homosexuality.
  • NASA launched the Webb telescope on December 25, 2021. The launch took place at 12:20 UTC and the telescope was aboard an Ariane 5 ECA (VA256) rocket. The rocket was launched from the Centre Spatial Guyanais, ELA-3.
  • The observatory’s primary mission is to study the universe’s first galaxies, stars, and planets and their formation.
  • Experts estimate that constructing the telescope will cost around US$10 billion. This makes one of the most expensive space missions ever undertaken.
  • They used 18 hexagonal segments to make the Webb mirror, and they applied a thin layer of gold that is only 100 nanometers thick to each segment.
  • The mirror uses a little more than 48 grams of gold in total. People use gold to coat mirrors because it excellently reflects infrared light. The mirror uses a total mass of gold equivalent to that of a golf ball, and the thin layer of gold filling a volume the size of a marble.
  • Webb can downlink a massive amount of recorded science data every day. It can transfer at least 57.2 gigabytes of data per day, and the maximum data rate is 28 megabits per second. This is a significant improvement compared to the Hubble Space Telescope, which can only transmit 120 megabytes of data per day.
  • An onboard solar array powers Webb, providing 2,000 watts of electrical power for the life of the mission.
    It also has a propulsion system that helps to maintain the observatory’s orbit and attitude. The propellant onboard is enough for at least 10 years of science operations.
  • The James Webb telescope has four scientific instruments that use infrared detectors to capture light from distant astronomical sources. The Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec), the Near-Infrared Imager and Slitless Spectrograph (NIRISS), and the Mid-Infrared Instrument (MIRI) are the instruments at play. Designers create each instrument to perform specific functions and give them unique capabilities.
  • The Webb telescope has a five- to 10-year mission lifetime.

Now, let’s dig into the achievements so far JWST has made. This is how we have elaborated on JWST’s achievements:

What are the achievements of the James Webb Space Telescope?

The James Webb Telescope has a range of scientific objectives, including observing the distant universe to study the formation of the first galaxies. The telescope’s ability to collect light that has taken billions of years to travel across the cosmos allows astronomers to see the objects as they were billions of years ago. The JWST has already captured a ‘deep field’ image centered around the galaxy cluster SMACS 0723, which is 4.6 billion light-years away. 

Space Exploration
Stephan’s Quintet is a laboratory for studying gravitational interactions between galaxies. This image from NIRCam and MIRI contains more than 150 million pixels and is constructed from 1,000 separate image files © NASA, ESA, CSA, and STScI

The gravitational field of the galaxy cluster has distorted these galaxies, as shown in the image. It provides new methods to measure galaxy mass and study the properties of dust in intervening galaxies. The James Webb Telescope can observe galaxies in the infrared. This allows astronomers to compare observations made in visible light by other telescopes. And study the evolution of galaxies over cosmic time. The JWST has also studied Stephan’s Quintet and M74. These are a group of interacting galaxies and a spiral galaxy, respectively. The telescope has revealed previously unseen details about these galaxies.  The telescope will collaborate with other observatories to study celestial objects and further our understanding of the universe. Infrared astronomy is especially useful for studying star formation. This is because longer wavelengths can penetrate the clouds of dust and gas that block visual light.

The James Webb Telescope has made several achievements in the field of exoplanet research. JWST can’t provide detailed images of planets outside our solar system. However, it did capture a direct image of an exoplanet: HIP 65426 b. This planet is between six to twelve times the mass of Jupiter. JWST used coronagraphs on its NIRCam and MIRI instruments to observe it. Also, JWST can analyze the light it receives to determine the chemical makeup of celestial objects.

Galaxy’s shape
At mid-infrared wavelengths, as seen by MIRI, the traditional shape of the galaxies disappears. This is because MIRI is not sensitive to starlight, which we traditionally use to define a galaxy’s shape © NASA, ESA, CSA, and STScI

Scientists used the NIRISS instrument of the JWST to study the exoplanet WASP-96 b and detected the presence of water vapor in its atmosphere. Furthermore, the James Webb Telescope has also targeted planets within our own Solar System, including Jupiter and Neptune. JWST has been successful in capturing different wavelengths from the NIRCam instrument to create an image of Jupiter, where brightness represented altitude in the Jovian atmosphere. The JWST’s ability to observe planetary systems provides opportunities to study smaller planets and cooler planets more similar to Earth, and giant planets in much more detail than previously available.

Now let’s conclude this discussion:

On the whole:

The James Webb Space Telescope is a remarkable achievement in human ingenuity and technology. The telescope has already achieved remarkable milestones. One of which is taking us back 13.5 billion years to the birth of the universe. Moreover, observing the distant universe to study the formation of the first galaxies. The James Webb Telescope has a minimum mission lifetime. However, it has the potential to revolutionize our understanding of the universe in unimaginable ways. It will undoubtedly play a crucial role in uncovering the secrets of the cosmos as we continue to explore the vastness of space. Its discoveries will inspire future generations to keep looking up and push the boundaries of science and technology.

Published by: Sky Headlines

NASA’s James Webb Space Telescope (JWST) has detected silicate cloud features in the atmosphere of a distant exoplanet called VHS 1256 b, which is located about 40 light-years away from us. VHS 1256 b is a planetary-mass object that orbits not one but two stars over 10,000 years. The atmosphere of this exoplanet is very dynamic, constantly mixing and moving during its 22-hour day. This makes it the most variable planet-size object ever discovered.

The research team, led by Brittany Miles of the University of Arizona, used data from JWST. This data help them to identify water, methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere. This is the largest number of molecules ever discovered at once on an extrasolar planet. They also detected both larger and smaller silicate dust grains in the planet’s atmosphere. These findings provide insights into the planet’s weather and atmospheric dynamics.

Exoplanet (VHS 1256 b)
Credits: Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)

But first, find out

What is VHS 1256 b?

VHS 1256 b is an exoplanet located about 40 light-years away from Earth. This planet orbits two stars and is one of the most variable planetary-mass objects ever observed. Its atmosphere is constantly changing, and it has swirling, gritty silicate clouds that are so surprising that they create significant brightness changes. Using the JSWT, researchers were able to detect a range of molecules in VHS 1256 b’s atmosphere. Molecules include water, methane, carbon monoxide, and carbon dioxide.

Professor A Biller of the University of Edinburgh says: There’s a huge return on a very modest amount of telescope time,” She added. “With only a few hours of observations, we have what feels like the unending potential for additional discoveries.”

Compared to other brown dwarfs with greater mass, VHS 1256 b exhibits lower gravity, allowing its silicate clouds to persist at higher altitudes where they can be observed. Moreover, the planet is relatively youthful, originating 150 million years ago. Over billions of years, it will continue to alter and cool. Exoplanet has already revealed many amazing facts about their atmosphere and environment. Scientists are still analyzing the data gathered by the James Webb Space Telescope.

A researcher at the University of Edinburgh in Scotland, Beth Biller says: “The finer silicate grains in its atmosphere may be more like tiny particles in smoke”. Moreover, she said: “The larger grains might be more like very hot, very small sand particles.”

Exoplanet Atmosphere
Credits: Image: NASA, ESA, CSA, J. Olmsted (STScI); Science: Brittany Miles (University of Arizona), Sasha Hinkley (University of Exeter), Beth Biller (University of Edinburgh), Andrew Skemer (University of California, Santa Cruz

Now, the question here is

How has JSWT observed this exoplanet?

The researchers used two instruments aboard the James Webb Space Telescope. One of which is called the Near-Infrared Spectrograph (NIRSpec). The second one is the Mid-Infrared Instrument (MIRI), to gather data known as spectra. Because VHS 1256 b orbits at a great distance from its two stars, the researchers were able to observe the planet directly without having to use a technique called a transit, which involves observing the dip in brightness of a star when a planet passes in front of it, or a coronagraph, which blocks the light of the star to reveal fainter objects nearby. This direct observation allowed for a more detailed analysis of the exoplanet’s atmosphere and the molecules presents within it.

Now come to the point,

What is the significance of this observation?

The observation of VHS 1256 b has provided scientists with a wealth of data about the planet’s atmosphere. Particularly about the composition and behavior of its clouds. This is significant because the study of exoplanet atmospheres is a key area of research in understanding the origins of our solar system and the possibility of life beyond it. Observing VHS 1256 b has allowed researchers to identify multiple features in the planet’s atmosphere simultaneously. This data will serve as a valuable resource for future modeling efforts.  Moreover, it will help scientists better understand the atmospheric conditions on exoplanets.

A research team led by Brittany Miles of the University of Arizona says: “We’ve identified silicates, but better understanding which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” He added: “This is not the final word on this planet – it is the beginning of a large-scale modeling effort to fit Webb’s complex data.”

The findings have opened up new avenues for research and highlighted the power of the James Webb Space Telescope in exploring the mysteries of the universe. Andrew Skemer, an Associate Professor at the University of California, Santa Cruz says: “No other telescope has identified so many features at once for a single target,” Moreover, he explains: “We’re seeing a lot of molecules in a single spectrum from Webb that detail the planet’s dynamic cloud and weather systems.”


Published by: Sky Headlines

The James Webb Space Telescope has made one of its first images of WR 124, a Wolf-Rayet star 15,000 light-years away in the constellation Sagittarius. The star is one of the brightest, most massive, and briefly observable stars known.

Now come to the point that,

Webb’s instruments reveal the detailed structure of WR 124’s nebula!

The Mid-Infrared Instrument (MIRI) on Webb reveals that Wolf-Rayet stars are effective dust emitters. In longer mid-infrared wavelengths, cooler cosmic dust illuminates, revealing the structure of WR 124’s nebula. Webb’s Near-Infrared Camera (NIRCam) balances the brightness of the star core of WR 124 with the intricate details in the fainter gas surrounding it.

Here is a term to know,

What is WR 124?

The material-ejected ring nebula M1-67  surrounds WR 124 a Wolf–Rayet star in the constellation Sagitta. At a radial velocity of around 200 kilometers per second, it is one of the fastest runaway stars in the Milky Way. Paul W discovered it in 1938. Merrill and classified as a Wolf–Rayet star with a high velocity. WR 124 is 30 times the Sun’s mass and has already shed 10 Suns’ worth of material. As the blasted gas recedes from the star and cools, cosmic dust develops and emits infrared light that Webb can detect.

So, here arises the question,

What is the importance of observing the rare Wolf-Rayet phase?

Before going supernova, massive stars go through a short Wolf-Rayet phase. Webb’s detailed observations of this rare phase are helpful to astronomers because they show how this phase works. Wolf-Rayet stars are now shedding their outer layers, resulting in their characteristic gas and dust halos.


How does WR 124 help in understanding the early history of the universe?

Astronomers use stars like WR 124 as analogs to comprehend better a crucial period in the universe’s early history. These dying stars initially seeded the newborn cosmos with heavy elements formed in their cores, elements that are now widespread across the universe, including on Earth.


Contribution to the universe’s “dust budget”!

Astronomers are interested in the genesis of cosmic dust that can survive a supernova explosion and contribute to the universe’s overall “dust budget” for a variety of reasons. Dust plays an essential function in the universe as it provides shelter for budding stars, aids in the formation of planets, and provides a platform for molecules, including the building blocks of life on Earth, to form and clump together. Despite dust’s crucial roles, there is more dust in the universe than can be explained by astronomers’ existing dust-formation hypotheses. The universe has an excess of dust in its budget.

We will be looking forward for,

Future possibilities for studying cosmic dust!

Before Webb, dust-loving astronomers required more specific data to investigate concerns of dust creation in environments such as WR 124 and whether the dust grains were large enough to survive the supernova and become a significant contributor to the total dust budget. Webb offers new opportunities for researching cosmic dust. It is best viewed at infrared light wavelengths.

Revealed Wolf Rayet star nebula
Credits: NASA, ESA, CSA, STScI, Webb ERO Production Team



NASA’s James Webb Space Telescope has looked at WR 124, a Wolf-Rayet star that is 15,000 light-years away and is in the constellation Sagittarius. Webb’s instruments have given us a clear picture of how the star’s nebula is put together. This shows that Wolf-Rayet stars are good at making dust. Before going supernova, WR 124 goes through a short phase called Wolf-Rayet, which is interesting for astronomers to study. Astronomers can also use stars like WR 124 to learn about a critical time in the universe’s early history. Cosmic dust is essential to the universe, and Webb gives us new ways to study it. Infrared wavelengths of light show the best cosmic dust, which Webb can also see.


Published by: Sky Headlines

The great James Webb Space Telescope (JWST) has captured the imagination of the scientific community and space enthusiasts alike. As the largest and most powerful space telescope ever built, It will change our understanding of the universe. Here are some amazing James Webb Telescope Facts that you need to know:

Fact 1: The JWST is the largest space telescope ever built

The JWST is massive, weighing in at 6.5 tons, and is about the size of a tennis court when fully deployed. The size of this great telescope is about 22 meters by 12 meters. According to NASA, Its primary mirror has a diameter of 6.5 meters (21 feet 4 inches) across, which is more than twice the size of the Hubble Space Telescope’s primary mirror.

Fact 2: It is an infrared telescope

Unlike Hubble, which primarily observes visible and ultraviolet light, the JWST is an infrared telescope. This means it can see through dust and gas clouds to reveal objects. The objects that are hidden from view at visible wavelengths. For example the earliest galaxies in the universe and the formation of stars and planets.

Fact 3: The JWST has a unique orbit

The JWST orbits around the L2 point, which is a gravitationally stable location in space located 1.5 million kilometers from Earth. This orbit allows the telescope to remain in a fixed position relative to Earth as it observes the universe, and provides a stable environment for its sensitive instruments.

Fact 4: It took over 20 years to develop and launch

The idea for the JWST was first proposed in the mid-1990s. Around 30 years ago, STScI Director Riccardo Giacconi urged the team to “think about the next major mission beyond Hubble.” Before the launch of Hubble, an STScI workshop developed a mission design in September 1989. The project has gone through numerous design iterations and funding challenges since then. The telescope finally launches on December 25, 2021, from ESA’s launch site at Kourou in French Guiana.

Fact 5: The goal of JSWT – Study the earliest galaxies and stars

One of the major James Webb Telescope facts is that it is the leading scientific goal of the JWST is to study the earliest galaxies that formed in the universe, shortly after the Big Bang. By observing these galaxies, scientists hope to gain insights into how the universe evolved over time. The telescope studies star and planet formation and searches for life on other worlds.

Fact 6: The lifespan of JSWT is at least 10 years

The JWST is designed to operate for at least 10 years, but it is expected to continue operating for much longer. Its instruments and systems have been designed to withstand the harsh conditions of space, and its unique orbit will help to ensure its longevity.

Fact 7: The JWST is a collaborative effort

The JWST is a collaborative effort between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The project has involved over 300 universities, organizations, and companies across 29 U.S. states and 14 countries.

Fact 8: The JWST will work with the Hubble Space Telescope

Although the JWST is much more powerful than the Hubble Space Telescope, the two telescopes will collaborate to explore the universe. The Hubble will continue to observe visible and ultraviolet light, while the JWST will focus on infrared light.

Fact 9: The JWST has already produced stunning images

Within a few months, the JWST started producing some stunning images of the universe. These images include a detailed look at the “Pillars of Creation” in the Eagle Nebula, and a spectacular view of the galaxy cluster Abell 2744.

JWST discovered the most distant galaxies in mid-December. The telescope proved its ability to observe the early universe with this milestone. The telescope discovered four 13.4 billion-year-old galaxies, which existed when the universe was 350 million years old. JWST’s Near Infrared Spectrograph found these galaxies (JADES).

Final Words!

The James Webb Space Telescope is a remarkable achievement of human invention and technological prowess. With its advanced capabilities, it promises to transform our understanding of the universe and help us answer some of the most fundamental questions about our place in the cosmos. The JWST continues to gather data and produce stunning images. As a result, it is sure to capture the imagination of people around the world.

Published by: Sky Headlines

At infrared wavelengths, NASA’s James Webb Space Telescope is revealing star formation, and networks of gas and dust in nearby galaxies. An initial collection of 21 research publications has shed light on how the universe’s simplest processes, such as star formation, affect the history of its largest objects, galaxies.

PHANGS collaboration:

In Webb’s first year of science operations, the Physics at High Angular resolution in Nearby Galaxies (PHANGS) collaboration is conducting the largest nearby galaxy survey. Janice Lee, Gemini Observatory chief scientist at the National Science Foundation’s NOIRLab and affiliate astronomer at the University of Arizona in Tucson, leads Webb observations.

Five of the team’s 19 spiral galaxies—M74, NGC 7496, IC 5332, NGC 1365, and NGC 1433—have been observed in Webb’s first few months of science operations. The results amaze astronomers.

David Thilker is a Professor at Maryland’s Johns Hopkins University. He says: “The clarity with which we are seeing the fine structure certainly caught us by surprise,”

Erik Rosolowsky is a Canadian student at the University of Alberta. He says that he was part of the team. Moreover, he explains: “We are directly seeing how the energy from the formation of young stars affects the gas around them, and it’s just remarkable,”

Webb reveals intricate networks of gas and dust in galaxies
Credits: NASA, ESA, CSA, and J. Lee (NOIRLab). Image processing: A. Pagan (STScI)

Webb’s Mid-Infrared Instrument (MIRI) photos show brilliant cavities of dust and large gas bubbles that line the spiral arms. However, This web of characteristics appears to be discrete and overlapping shells and bubbles where young stars release energy in some nearby galaxies.

Karin Sandstrom is also a squad member at Columbia university San Diego. She says: “Areas which are completely dark in Hubble imaging light up in exquisite detail in these new infrared images, allowing us to study how the dust in the interstellar medium has absorbed the light from forming stars and emitted it back out in the infrared, illuminating intricate networks of gas and dust,”

The Evolution:

For a long time, astronomers lacked the high-resolution images necessary to examine these formations, but Webb has changed all that.

Adam Leroy is a member of the PHANGS team. He explained that the team has conducted years of observations of galaxies at optical, radio, and ultraviolet wavelengths. The observation is get using various telescopes. This telescope includes NASA’s Hubble Space Telescope, and the Atacama Large Millimeter/Submillimeter Array. Moreover, the Very Large Telescope’s Multi Unit Spectroscopic Explorer is also very significant in the observation.

Despite these extensive observations, the earliest stages of a star’s lifecycle have remained out of view, as they occur within dense clouds of gas and dust that shroud the process from view. These networks of gas and dust are also known as molecular clouds. They are clouds where stars are born. Moreover, the complex processes that lead to the formation of new stars take place in this region. Studying these molecular clouds in more detail is very significant for the PHANGS team. As they hope to shed light on the earliest stages of star formation. This will help them gain a better understanding of how stars are born and evolve.

With its tremendous infrared capabilities, Webb can see past the obscuring dust and piece it together.

Polycyclic aromatic hydrocarbons:

Polycyclic aromatic hydrocarbons play also an essential role in star and planet formation. Besides, Their emission can be detected at specific wavelengths. These emissions can be observed by MIRI (7.7 and 11.3 microns) and Webb’s Near-Infrared Camera (3.3 microns). With the initial PHANGS observations, Webb was able to spot these compounds.

Understanding the bigger picture of galaxy evolution through the study of these interactions at the smallest scale is possible.


Webb reveals intricate networks of gas and dust in galaxies
Credits: NASA, ESA, CSA, and J. Lee (NOIRLab). Image processing: A. Pagan (STScI)

Leader of the PHANGS team:

Eva Schinnerer is a leader of the PHANGS team. Moreover, he is an astronomer at the Max Planck Institute for Astronomy in Heidelberg, Germany. He explained about the networks of gas and dust: “Because these observations are taken as part of what’s called a treasury program, they are available to the public as they are observed and received on Earth,”

In order to assist in the process of discovery, the PHANGS team will work to compile and share data sets that align Webb’s data to each of the complementary data sets gathered previously from the other observatories.

In a statement, Lee expressed his gratitude for the high resolution of the telescope. The telescope allows conducting of a comprehensive census of star formation in nearby galaxies beyond the Local Group. Moreover, Lee suggests that this census will provide insight into how star formation and its feedback impact the interstellar medium. This could either lead to the formation of the next generation of stars or impede their formation. Furthermore, The inventories of interstellar medium bubble structures will help in understanding the complex interplay between star formation and the surrounding environment. This will provide important insights into the formation and evolution of galaxies.

PHANGS study is part of the General Observer program 2107. The Astrophysical Journal Letters released the team’s early findings from 21 research in a special emphasis issue.


Published by: Sky Headlines

NASA’s James Webb Space Telescope has released its latest deep field image, which shows previously unseen details in a region of space known as Pandora’s Cluster (Abell 2744). Three huge galaxies join to form a giant cluster, according to Webb. Due to the cluster’s gravitational lens, scientists can identify even more distant galaxies from the early universe by using it as a magnifying glass.

Previous NASA’s Hubble Space Telescope research only focused on Pandora’s center core. With the powerful infrared instruments aboard Webb and a wide mosaic view of the region’s many sites of lensing, astronomers hoped to strike a balance between breadth and depth that would lead to new insights into the nature of the universe and the development of galaxies.

Rachel Bezanson is an astronomer at the University of Pittsburgh in Pennsylvania. Moreover, he is the co-principal investigator on the “UNCOVER” (Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization) program to study the region. “The ancient myth of Pandora is about human curiosity and discoveries that delineate the past from the future, which I think is a fitting connection to the new realms of the universe Webb is opening up, including this deep-field image of Pandora’s Cluster,”

Combining JSWT images!

The recently discovered view of Pandora’s Cluster is a panorama of four Webb photographs, displaying over 50,000 sources of near-infrared light. “When the images of Pandora’s Cluster first came in from Webb, we were honestly a little star-struck,”. Bezanson says. “There was so much detail in the foreground cluster and so many distant lensed galaxies, I found myself getting lost in the image. Webb exceeded our expectations.”

In addition to magnification, gravitational lensing distorts distant galaxies, making them look significantly different from those in the foreground. The galaxy cluster “lens” is so large that it warps space, causing light from distant galaxies to look twisted.

Explanation – Ivo Labbe!

Astronomer Ivo Labbe of the Swinburne University of Technology in Melbourne, Australia, co-principal investigator on the UNCOVER program. He says that in the lensing core to the lower right in the Webb image, Hubble has never imaged. Webb revealed hundreds of distant lensed galaxies that appear as faint arced lines. As you zoom in, more appear.

In another statement, Labbe expresses excitement about the new image of Pandora’s Cluster captured by the James Webb Space Telescope, a new and powerful tool for studying the universe. The image is better than ever, according to Labbe.

Labbe also emphasizes the beauty of the image, stating that it looks like a simulation of galaxy formation. However, Labbe reminds us that this is not a simulation but real data and that the image represents a new era of astronomy where we can observe and study the universe in unprecedented detail.

Webb’s Imaging!

The UNCOVER team observed Pandora’s cluster for around 30 hours, using exposures of 4-6 hours with Webb’s Near-Infrared Camera (NIRCam). The next step is to carefully examine the imaging data. And to choose galaxies for further observation with the Near-Infrared Spectrograph (NIRSpec). This will yield accurate distance measurements and additional information about the lensed galaxies’ compositions. Thus shedding light on the formative stages of galaxy formation and evolution. According to the UNCOVER group, these NIRSpec observations will take place in the summer of 2023.

NIRCam photometric data of Pandora’s Cluster is also available. This helps other astronomers can become familiar with it and plan their scientific studies with Webb’s rich datasets. “We are committed to helping the astronomy community make the best use of the fantastic resource we have in Webb,” said UNCOVER co-investigator Gabriel Brammer of the Niels Bohr Institute’s Cosmic Dawn Center at the University of Copenhagen. “This is just the beginning of all the amazing Webb science to come.”

Webb has enormous datasets and NIRCam photometric data. This can be very helpful for astronomers to create research programs. Gabriel Brammer is the co-investigator of the UNCOVER and the Cosmic Dawn Center at the University of Copenhagen. He said remarked: “We are committed to assisting the astronomy community in making the best use of the amazing resource we have in Webb.” The incredible Webb science to come will only begin with this, so to speak.

Webb data from three early observation programs. Named JWST-GO-2561, JWST-DD-ERS-1324, and JWST-DD-2756. This was used to create the UNCOVER team’s photo mosaics and source library for Pandora’s Cluster (Abell 2744).

Published by: Sky Headlines

The massive asteroid is the size of the Washington Monument. This demonstrates the power of the powerful telescope in discovering celestial objects even in our own backyard. The James Webb Space Telescope (JWST) discovered the smallest asteroid estimated to be the size of Rome’s Colosseum. The JWST is have caught various small objects since its launch at the end of 2021.

The James Webb Space Telescope has gained recognition for detecting far and massive astronomical objects.
Its latest discovery, however, showcases its unexpected usefulness closer to Earth. The new discovery demonstrates the instrument’s potent capabilities even in our own backyard.

What makes this news that big?

The discovery of the 330- to 660-foot (100- to 200-meter) asteroid is all the more remarkable because it was discovered using data that was originally collected to calibrate the Mid-Infrared Instrument (MIRI), not to find new asteroids. This demonstrates the JWST’s unexpected and powerful capabilities.

The asteroid belt:

The asteroid belt lies between Mars and Jupiter. It is home to millions of space rocks. Moreover, it remained of the solar system formed over 4.5 billion years ago. The objects in the belt range in size from Ceres, a dwarf planet with a diameter of around 620 miles (1000 kilometers), to small fragments less than 33 feet (10 meters).

As “fossilized remains” of the early solar system, asteroids hold valuable information about the formation of planets, including Earth. The study of these celestial objects can shed light on the early stages of planetary development.

Discovery and analysis of the smallest asteroid:

Smaller asteroids have been less extensively studied due to their difficulty in observation. However, it offers valuable insights into the early solar system.

The discovery of the smallest asteroid by the JWST is particularly exciting. Because it suggests that astronomers will have the capability to study even smaller asteroids in the future. Moreover, those asteroids are less than half a mile in diameter. And they will be studied using a powerful telescope.

The data from JSWT while observing the main-belt asteroid (10920) 1998 BC1. This was originally discovered in 1998. Despite the efforts of the team, the observation has been considered a failure due to the excessive brightness of asteroid 10920 1998 BC1 and an incorrect alignment of the JWST’s direction.

Future work:

Recognizing that the data is still very useful. The team decides to use it to establish and validate a new method for calculating an object’s orbit and size. Through their analysis, they discovered the “photo-bombing” asteroid, which had unexpectedly entered the frame.


By analyzing the data, the scientists estimated the size of the asteroid. They determined that it was located in the inner region of the main asteroid belt. Moreover, it had a low-inclination orbit. Going forward, astronomers will work to refine the orbit of the newly discovered object. And make additional observations against the backdrop of stars.

What are astronomers’ reviews on the smallest asteroid?

Bryan Holler:

Bryan Holler is a Webb support scientist in Baltimore at the Space Telescope Science Institute (STSI). He says: “This is a fantastic result which highlights the capabilities of MIRI to serendipitously detect a previously undetectable size of asteroid in the main belt,”. Moreover, he says: “Repeats of these observations are in the process of being scheduled, and we are fully expecting new asteroid interlopers in those images!”

Thomas Müller:

An astronomer at Max Planck Institute for Extraterrestrial Physics astronomer Thomas Müller said in a statement: “We  —  completely unexpectedly  —  detected a small asteroid in publicly available MIRI calibration observations,” Moreover, he said: “The measurements are some of the first MIRI measurements targeting the ecliptic plane and our work suggests that many, new objects will be detected with this instrument.”

Müller says that findings demonstrate that even “failed” observations from the JSWT can still yield valuable scientific results, with the right approach and a bit of good fortune. He said: “Our results show that even ‘failed’ Webb observations can be scientifically useful if you have the right mindset and a little bit of luck,” Müller more said. “Our detection lies in the main asteroid belt, but the JWST’s incredible sensitivity made it possible to see this roughly 100-meter object at a distance of more than 100 million kilometers [over 62 million miles].”


Published by: Sky Headlines