NASA Perseverance rover sees the Light on Mars. Let’s uncover some of the important knowledge about this discovery, and see how it does it looks like?

Light on Mars Seen by Peserverance Rover
NASA’s Perseverance Mars rover uses SHERLOC – one of several instruments on the end of its robotic arm – to study rocks in an area nicknamed “Skinner Ridge.” Credits: NASA/JPL-Caltech/ASU/MSSS

Perseverance Rover’s SHERLOC & Light on Mars

In a recent study, a cutting-edge tool called SHERLOC—which looks for compounds perhaps connected to ancient life—played a crucial role. Thanks to SHERLOC, a cutting-edge instrument on the rover’s robotic arm, NASA’s Perseverance rover may have discovered a varied assortment of organics during its first 400 days on Mars.

Organics are carbon-based substances thought to be the foundation of life. Whether the chemicals came from biological or geological sources is unknown to the mission’s scientists. Who are looking for proof that the planet formerly hosted microbial life.

Nevertheless, they are interested.

SHERLOC, an acronym for Scanning Habitable Environments with Raman & Light on Mars for Organics & Chemicals, aids researchers in determining whether or not a sample is worthwhile obtaining. The Mars Sample Return campaign therefore requires the equipment to be successful.

The campaign’s initial stage is the Perseverance rover, a joint effort by NASA and the European Space Agency (ESA). It aims to return carefully chosen samples from Mars back to Earth so that they may be investigated there with lab apparatus that is far more sophisticated than that which could be transported to the Red Planet. It would be necessary to return the samples to verify the presence of organics.

mineral mapped across a rock’s surface
Each color in this image represents a different mineral mapped across a rock’s surface. The mineral map was made by the SHERLOC instrument in a test prior to NASA’s Perseverance rover launching to Mars. Credits: NASA/JPL-Caltech

What are the SHERLOC’s Powerful Insights & Chemical Composition?

The core of SHERLOC’s capabilities is a method that examines the chemical composition of rocks by examining how they scatter light. An ultraviolet laser is point at the target by the equipment. The Raman effect, a phenomenon that describes how that light on Mars is absorb and then release. It offers a distinct spectral “fingerprint” of various substances.

As a result, scientists are better able to categorize the minerals and organics found in rocks and comprehend the environment in which they arose. For instance, different minerals can occur in saltier water than in fresh water.

SHERLOC uses its WATSON (Wide Angle Topographic Sensor for Operations and Engineering) camera to record the textures of rocks, then adds information to the photos to produce spatial maps of the chemicals present on the rock’s surface. The results have been as encouraging as the instrument’s science team had hoped, as described in a recent report in Nature.

SHERLOC
Within a rock target called “Garde,” different kinds of carbon-based molecules called organic compounds were viewed by SHERLOC, one of the instruments on the end of the robotic arm aboard NASA’s Perseverance Mars rover. Credits: NASA/JPL-Caltech/MSSS/LANL/PhotonSys

Can SHERLOC Rocks Preserving the Evidence of Martian Life & Light on Mars?

A lead author Sunanda Sharma of NASA’s Jet Propulsion Laboratory in Southern California. JPL built SHERLOC along with the Perseverance rover, said:

“These detections are an exciting example of what SHERLOC can find. And they’re helping us understand how to look for the best samples”

Gale Crater, 2,300 miles (3,700 kilometers) from Perseverance. It has been verified to contain organic molecules numerous times by NASA’s Curiosity rover. Which landed on Mars in 2012. SAM, or the Sample Analysis of light on Mars. It is an equipment inside Curiosity that burns up powderized rock samples. And analyzes the vapor that results.
Scientists on Perseverance are searching for rocks. That may have preserved evidence of prehistoric microbial life, therefore they want to conserve the samples for further examination on Earth.

SHERLOC’s Intriguing Discoveries in Quartier and Beyond

Ten rock targets that SHERLOC researched are examine in the new Nature paper, including “Quartier.”

“We see a set of signals that are consistent with organics in the data from Quartier.”

The science team determines whether to use the rover’s drill to core a rock sample that is roughly the size of a piece of blackboard chalk when data from SHERLOC and other equipment appears promising. Following Quartier’s analysis, they took “Robine” and “Malay” rock-core

Light on Mars
This close-up view of the SHERLOC instrument located at the end of the robotic arm on NASA’s Perseverance rover was captured prior to the rover’s launch to Mars.
Credits: NASA/JPL-Caltech

samples from the same rock, making a total of two of the 20 core samples thus far.

Finding the most organic molecules doesn’t necessarily indicate a good target from which to take a sample. In the end, the researchers from Perseverance hope to gather a set of samples. That is typical of all the many regions that can be found in Jezero Crater.

Mars’ Past through Sample Analysis and Contextual Insight

Future researchers who examine these samples will be able to put them into context. By knowing what changes might have happened surrounding any samples. That might show evidence of prehistoric life, and light on Mars.

“The value comes from the sum rather than any individual sample,” Sharma said. “Pointillism is a good analogy for this. We’re eventually going to step back and see the big picture of how this area formed.”

River in Mars carried chunks of rocks from somewhere. It happened because NASA’s Perseverance Mars rover drilled this sample action. If you are interested in knowing more about the rocks, and how the river has drilled this action, then continue reading.

What discoveries did NASA’s Perseverance rover make with River in Mars?

On June 23 (the 832nd Martian day, or sol, of the mission), NASA’s Perseverance Mars rover sealed the tube containing its 20th rock core sample, and the mission’s science team is enthusiastic about its possibilities. The six-wheeled geologist is receiving some aid in its search for various rock samples that could be sent to Earth for further study.

This is because this sample was taken by the rover from a rock outcrop made of small fragments of other rocks that were transported here by a river in the distant past and became cemented together.
With each new rock fragment signifying a geologic tale to be told, conglomerates like this one—dubbed “Emerald Lake”, River in Mars, by the team—pack a lot of information about locations the rover may never reach.
“Pebbles and boulders found in a river are messengers from afar,” said Ken Farley, Perseverance project scientist from Caltech in Pasadena.

“And while the water that created the Martian riverbed that Perseverance is currently exploring evaporated billions of years ago, the story carried by those waters remains fresh, stored in conglomerate rock.”

If you are wondering what are perseverance rock samples that are collected for return to Earth and examined to uncover Mars’ history, then the following part is for you!

What can Perseverance’s ‘Otis Peak’ rock core samples reveal about Mars’ past?

These samples are persistently being gathered to be returned to Earth by the NASA-ESA (European Space Agency) Mars Sample Return campaign and examined by lab apparatus that is too huge and sophisticated to be sent to Mars.

Each stone and fragment in this core, known as “Otis Peak,” can be examined by scientists to learn information about its age, the river’s environmental conditions at the time the conglomerate formed, and whether or not it contains evidence of ancient microbial life.

River in Mars is Helping NASA’s Perseverance
NASA’s Perseverance captured this image June 13 of a sample it cored from a conglomerate rock called “Emerald Lake.” This “Otis Peak” core shows distinctly colored areas that are individual minerals transported by a river that once flowed into Jezero Crater.
Credits: NASA/JPL-Caltech

Perseverance, now in its third science campaign, is investigating the top of a 130-foot-tall (40-meter) fan-shaped mound of sedimentary rock. The rover is moving toward “Snowdrift Peak,” a low peak, with this sample sealed and kept inside its belly. It will have to travel across a boulder field to get there.

Now, here arises a question in your mind what boulders likely transported by an ancient river on Mars are being considered? If yes, then keep hovering!

Can ancient river-borne boulders hold the key to Mars’ geological secrets?

Scientists think the boulders likely developed somewhere and were moved to their present location billions of years ago by an ancient river, just like the rock fragments in the Otis Peak sample.

Boulders are desirable because of their expansive surface areas, which enable researchers to visually examine a variety of possibly unique rocks in a single photograph. To be prepared to stop for anything that piques their interest, the team will be keeping their options open.

Farley said:

“Whether the boulders appear intriguing enough for closer examination and possible sampling remains to be seen – literally. 

We’re taking a page from the past. Prospectors looking for gold or diamonds in the old days often looked in rivers to determine whether there was any deposit of interest upstream. No need to hike up there to see – let the river do the work!”

If you want to know more about the Boulders that could be a Potential Window into Mars’ Geological History, then the next part of the blog is for you!

Is there a fast-flowing river in Mars?

The Perseverance rover, currently exploring the Jazero crater on Mars, has uncovered evidence of fast-flowing rivers and lakes in the planet’s past. This discovery is prompting scientists to reassess their understanding of the characteristics of ancient Martian watery environments.

Is there an underground lake on Mars?

According to research findings, Mars once possessed a global groundwater system, and several significant planetary features were shaped by the influence of this groundwater. When water ascended to the surface or approached it closely, diverse minerals were deposited, and sediments underwent a cementation process, binding them together to create distinct geological formations.

One of the largest subglacial lakes, comparable in size to Lake Ontario, is Lake Vostok, lying beneath over 2 miles (3 km) of ice. Remarkably, certain subglacial lakes host thriving microorganisms that appear to sustain themselves by consuming minerals present in crushed rock.

Where is water hidden on Mars?

Evidence of an extensive water deposit has been detected beneath the Valles Marineris Martian canyon system by the European Space Agency’s ExoMars orbiter. This canyon system, among the largest in the Solar System, surpassing the Grand Canyon in Arizona by about five times in depth and ten times in length, has provided valuable insights into the presence of water on Mars.

Why did the river in Mars dry up?

For a considerable time, scientists have hypothesized that the loss of carbon dioxide from Mars’ atmosphere played a role in maintaining its warmth and leading to its desiccation. Unlike Earth, Mars lacks tectonic plate movement to bury rocks over extended periods, which has preserved the ancient imprints of surface rivers undisturbed over time.

During its most recent science campaign, the six-wheeled scientist came across the crater while looking for rock samples that could be transported back to Earth for further investigation.

The Mastcam-Z instrument on NASA’s Perseverance rover recently took 152 photos while exploring Belva Crater, a large impact crater within the much larger Jezero Crater. The data, stitched into a stunning mosaic, are not only eye-catching but also provide the rover’s science team with some significant insights into Jezero’s innards.

Where Is Perseverance Right Now?

“Mars rover missions usually end up exploring bedrock in small, flat exposures in the rover’s immediate workspace,” said Katie Stack Morgan, Perseverance’s deputy project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “Our science team was so excited to photograph and study Belva.” Impact craters can provide vast views and vertical incisions that offer vital insights to the origin of these rocks from a perspective and size we don’t usually see.”

On Earth, geology instructors frequently take their students to highway “roadcuts” – areas where construction crews have sliced vertically into the rock to create a way for highways – where they may see rock strata and other geological phenomena that are not apparent from the surface. Impact craters like Belva on Mars can operate as natural roadcuts.

Watermarks from the Past

Perseverance photographed the basin on April 22 (the 772nd Martian day, or sol) while parked slightly west of Belva Crater’s rim on a light-toned rocky outcrop known as “Echo Creek” by the mission’s science team. The 0.6-mile-wide (0.9-kilometer-wide) crater, formed by a meteorite impact ages ago, displays various locations of exposed bedrock and a section where sedimentary layers curve steeply downward.

These “dipping beds” could imply the presence of a massive Martian sandbar made of material that was deposited billions of years ago by a river channel flowing into the lake that previously occupied Jezero Crater.

The science team believes the big rocks in the foreground are either exposed bedrock from the meteorite impact or were brought into the crater by the river system. The scientists will continue to look for answers by comparing features detected in the bedrock near the rover to larger-scale rock layers observed in distant crater walls.

The mission also constructed an anaglyph, or 3D, version of the mosaic to aid in those efforts. “An anaglyph can help us visualize the geologic relationships between crater wall outcrops,” Stack explained. “However, it also provides an opportunity to simply enjoy an incredible view. “I’m transported to the western rim of Belva when I gaze at this mosaic through red-blue 3D glasses, and I wonder what future astronauts would say if they stood where Perseverance previously stood when it took this photo.”

More Information on the Mission

Astrobiology is a primary goal for Perseverance’s mission on Mars, particularly the collection of samples that may include evidence of ancient microbial life. The rover will analyze the planet’s geology and previous climate, paving the groundwork for future human exploration of Mars, and be the first mission to gather and cache Martian rock and regolith.

Subsequent NASA missions would deploy spacecraft to Mars in collaboration with ESA to collect these sealed samples from the surface and return them to Earth for in-depth investigation.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration strategy, which includes Artemis Moon missions to help prepare for human exploration of the Red Planet.

JPL, which is overseen by Caltech for NASA, created and operates the Perseverance rover.

Does it seem like we’re the only living beings in the universe? This is a topic that has captivated us for centuries. The Perseverance rover, developed by NASA, has brought us one step closer to figuring it out. The Perseverance spacecraft was scheduled to launch in July 2020 to find evidence of past Martian life, collect samples to be delivered back to Earth, and also test technology that will be crucial for future human journeys to Mars.

This rover is also helping us move closer to our goal of colonizing other planets by, among other things, looking for fossils of extinct life and experimenting with techniques for producing oxygen on Mars.

The Perseverance, with its state-of-the-art scientific instruments and impressive capabilities, marks a significant milestone in humanity’s quest to discover life on Mars.

Time to get ready for our trip to Mars!

Launch and Journey!

The Perseverance rover took off from Florida’s Cape Canaveral Air Force Station on an Atlas V rocket on July 30, 2020. However,  It took nearly 7 months to go to Mars, a distance of about 293 million miles (471 million kilometers). On February 18, 2021, Perseverance arrived in Mars’s atmosphere and landed in the Jezero Crater, a dried-up lakebed on the red planet.

Features and Capabilities!

With a mass of 2,260 pounds, perseverance is roughly the size of a car (1,025 kilograms). It has a camera system, a laser spectrometer, a robotic arm with a drill and a scoring system, and other high-tech scientific instruments to study Martian soil and rock. A radioisotope thermoelectric generator (RTG) turns the heat produced by the radioactive decay of plutonium into electricity, which is then used to run the rover’s instruments and systems.

Discoveries and Accomplishments!

Perseverance has made tremendous progress in its search for ancient life on Mars. The rover has been investigating Jezero Crater, which scientists believe was once habitable with a river delta and lake. Perseverance revealed the crater’s ancient river delta. Perseverance has been in photographing and chemically analyzing the crater’s rocks and dirt. Organic compounds may indicate life on Mars.

Perseverance is also testing Mars-related technologies. The rover is trying a device to convert carbon dioxide in the Martian atmosphere into oxygen for breathing and rocket propellant. Ingenuity, a small helicopter tested by Perseverance, made the first controlled flight on another planet on April 19, 2021.

Evidence of Ancient Life:

Perseverance Rover has made exciting discoveries in its search for ancient life on Mars. Moreover, Perseverance is exploring the Jezero Crater, which may have had a river delta and lake. The rover uncovered signs of an ancient river delta in the crater, indicating flowing water. Perseverance has also been taking images and chemically analyzing the rocks and soil in the hole and found organic compounds, which could indicate life on Mars.

Ingenuity’s First Flight:

Ingenuity, a small helicopter on Perseverance, tests Mars flying. Ingenuity made the first controlled flight on Mars on April 19, 2021, proving powered flight is viable in the low atmosphere. The 40-second flight advanced our understanding of Mars aerial exploration.

MOXIE’s Oxygen Production:

MOXIE—Mars Oxygen In-Situ Resource Utilization Experiment—is being tested by Perseverance. MOXIE converts Martian carbon dioxide into oxygen for breathing and rocket fuel. Moreover, MOXIE produced 5 grams of oxygen on Mars for the first time in April 2021, enough to sustain a human astronaut for 10 minutes. This was a great breakthrough in the quest for life on Mars.

Sample Collection Technology!

Perseverance Rover can drill Martian soil and rocks. A future mission will retrieve the samples from tubes left on Mars. Perseverance returned the first rock sample from another planet to Earth in June 2021.

Mapping the Martian Surface:

Perseverance also has a high-resolution Martian surface camera. This approach has helped the rover map the Jezero Crater and find scientifically significant locations. Future Mars missions will use Perseverance’s mapping capabilities to find the ideal places to explore and collect samples.

Future Plans!

The spacecraft Perseverance’s mission duration will be at least one Martian year, approximately 687 Earth days. During this period, the rover will continue to investigate the Jezero Crater. Moreover, it will collect soil and rock samples in search of life on Mars. The researchers will also be analyzing samples.

Perseverance will continue to put cutting-edge technologies and scientific probes to the test in the coming months. This is necessary to gain a better understanding of Mars’ past and potential future as a habitable world. Furthermore, NASA’s success in sending the Perseverance rover to Mars is a significant milestone in our exploration of the Red Planet. With its innovative science equipment, cutting-edge technologies, and ambitious mission goals, Perseverance is paving the way for future discoveries and human exploration of Mars.

 

Published by: Sky Headlines