The massive asteroid is the size of the Washington Monument. This demonstrates the power of the powerful telescope in discovering celestial objects even in our own backyard. The James Webb Space Telescope (JWST) discovered the smallest asteroid estimated to be the size of Rome’s Colosseum. The JWST is have caught various small objects since its launch at the end of 2021.
The James Webb Space Telescope has gained recognition for detecting far and massive astronomical objects.
Its latest discovery, however, showcases its unexpected usefulness closer to Earth. The new discovery demonstrates the instrument’s potent capabilities even in our own backyard.
What makes this news that big?
The discovery of the 330- to 660-foot (100- to 200-meter) asteroid is all the more remarkable because it was discovered using data that was originally collected to calibrate the Mid-Infrared Instrument (MIRI), not to find new asteroids. This demonstrates the JWST’s unexpected and powerful capabilities.
The asteroid belt:
The asteroid belt lies between Mars and Jupiter. It is home to millions of space rocks. Moreover, it remained of the solar system formed over 4.5 billion years ago. The objects in the belt range in size from Ceres, a dwarf planet with a diameter of around 620 miles (1000 kilometers), to small fragments less than 33 feet (10 meters).
As “fossilized remains” of the early solar system, asteroids hold valuable information about the formation of planets, including Earth. The study of these celestial objects can shed light on the early stages of planetary development.
Discovery and analysis of the smallest asteroid:
Smaller asteroids have been less extensively studied due to their difficulty in observation. However, it offers valuable insights into the early solar system.
The discovery of the smallest asteroid by the JWST is particularly exciting. Because it suggests that astronomers will have the capability to study even smaller asteroids in the future. Moreover, those asteroids are less than half a mile in diameter. And they will be studied using a powerful telescope.
The data from JSWT while observing the main-belt asteroid (10920) 1998 BC1. This was originally discovered in 1998. Despite the efforts of the team, the observation has been considered a failure due to the excessive brightness of asteroid 10920 1998 BC1 and an incorrect alignment of the JWST’s direction.
Future work:
Recognizing that the data is still very useful. The team decides to use it to establish and validate a new method for calculating an object’s orbit and size. Through their analysis, they discovered the “photo-bombing” asteroid, which had unexpectedly entered the frame.
By analyzing the data, the scientists estimated the size of the asteroid. They determined that it was located in the inner region of the main asteroid belt. Moreover, it had a low-inclination orbit. Going forward, astronomers will work to refine the orbit of the newly discovered object. And make additional observations against the backdrop of stars.
What are astronomers’ reviews on the smallest asteroid?
Bryan Holler:
Bryan Holler is a Webb support scientist in Baltimore at the Space Telescope Science Institute (STSI). He says: “This is a fantastic result which highlights the capabilities of MIRI to serendipitously detect a previously undetectable size of asteroid in the main belt,”. Moreover, he says: “Repeats of these observations are in the process of being scheduled, and we are fully expecting new asteroid interlopers in those images!”
Thomas Müller:
An astronomer at Max Planck Institute for Extraterrestrial Physics astronomer Thomas Müller said in a statement: “We — completely unexpectedly — detected a small asteroid in publicly available MIRI calibration observations,” Moreover, he said: “The measurements are some of the first MIRI measurements targeting the ecliptic plane and our work suggests that many, new objects will be detected with this instrument.”
Müller says that findings demonstrate that even “failed” observations from the JSWT can still yield valuable scientific results, with the right approach and a bit of good fortune. He said: “Our results show that even ‘failed’ Webb observations can be scientifically useful if you have the right mindset and a little bit of luck,” Müller more said. “Our detection lies in the main asteroid belt, but the JWST’s incredible sensitivity made it possible to see this roughly 100-meter object at a distance of more than 100 million kilometers [over 62 million miles].”